
A Second Look at the Portability of Deep Learning Side-Channel
Attacks over EM Traces

Mabon Ninan
University of Cincinnati
Cincinnati, OH, USA

ninanmm@mail.uc.edu

Evan Nimmo
University of Cincinnati
Cincinnati, OH, USA

nimmoem@mail.uc.edu

Shane Reilly
University of Cincinnati
Cincinnati, OH, USA
reillysp@mail.uc.edu

Channing Smith∗
College of Charleston
Charleston, SC, USA
smithcs@g.cofc.edu

Wenhai Sun
Purdue University

West Lafayette, IN, USA
whsun@purdue.edu

Boyang Wang
University of Cincinnati
Cincinnati, OH, USA
boyang.wang@uc.edu

John M. Emmert
University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

ABSTRACT
Deep learning side-channel attacks can recover encryption keys on
a target by analyzing power consumption or electromagnetic (EM)
signals. However, they are less portable when there are domain
shifts between training and test data. While existing studies have
shown that pre-processing and unsupervised domain adaptation
can enhance the portability of deep learning side-channel attacks
given domain shifts over EM traces, the findings are limited to easy
targets (e.g. 8-bit microcontrollers).

In this paper, we investigate the portability of deep learning
side-channel attacks over EM traces acquired from more challeng-
ing targets, including 32-bit microcontrollers and EM traces with
random delay. We study domain shifts introduced by the combina-
tion of hardware variations, distinct keys, and inconsistent probe
locations between two targets. In addition, we perform compar-
ative analyses of multiple existing (and new) pre-processing and
unsupervised domain adaptation methods. We conduct a series of
comprehensive experiments and derive three main observations.
(1) Pre-processing and unsupervised domain adaptation methods
can enhance the portability of deep learning side-channel attacks
over more challenging targets. (2) The effectiveness of each method,
however, varies depending on the target and probe locations in
use. In other words, observations of a method on easy targets do
not necessarily generalize to challenging targets. (3) None of the
methods can constantly outperform others. Moreover, we highlight
two types of pitfalls that could lead to over-optimistic attack results
in cross-device evaluations. We also contribute a large-scale public

∗The work was done when the author was at the University of Cincinnati.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30–October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678900

dataset (with 3 million EM traces from 9 probe locations over mul-
tiple targets) for benchmarking and reproducibility of side-channel
attacks tackling domain shifts over EM traces.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.

KEYWORDS
Side-channel analysis, deep learning
ACM Reference Format:
Mabon Ninan, Evan Nimmo, Shane Reilly, Channing Smith, Wenhai Sun,
Boyang Wang, and John M. Emmert. 2024. A Second Look at the Portability
of Deep Learning Side-Channel Attacks over EM Traces. In The 27th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses (RAID
2024), September 30–October 02, 2024, Padua, Italy. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3678890.3678900

1 INTRODUCTION
Side-channel attacks can reveal encryption keys on a target (e.g.,
a microcontroller or FPGA) by analyzing power consumption or
electromagnetic (EM) signals [4, 7, 19]. The attack is feasible as
correlations exist between power consumption and intermediate
results of encryption. Deep learning side-channel attacks train a
neural network by acquiring training data from a training target and
then recover keys on a test target with the trained neural network.
Existing research [1, 25, 30, 34] have shown that deep learning side-
channel attacks can outperform traditional side-channel attacks,
such as Template Attacks [7], especially when countermeasures
(such as masking and random delay) are applied.

On the other hand, deep learning side-channel attacks are less
effective or even fail to recover keys when there are domain shifts
between training data and test data [2, 10, 15, 38, 52, 53]. These
domain shifts can be introduced by various factors between the
training target and test target, such as hardware manufacturing
variations [2], distinct keys [2], various software settings [47], and
inconsistent probe positions [9]. For side-channel attacks over EM

https://doi.org/10.1145/3678890.3678900
https://doi.org/10.1145/3678890.3678900

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

DFT PCA LDA MVN MMD-
DA ADA On-the-

Fly FT
8-bit
target

16-bit
target

32-bit
target

Random
delay

JCE13 [28] × × × √ × × × × √ × ×
JETC22 [9]

√ √ √ × × × × √ × × ×
CHES21 [6] × × × × √ × × √ × × ×
Ours

√ √ √ √ √ √ √ √ × √ √

Table 1: High-level comparison between ours and previous studies on cross-device side-channel attacks over EM traces (
√
:

investigated; ×: not investigated).

signals, domain shifts can be primarily caused by the combination
of discrepancies in keys, hardware, and probe locations. Specifically,
it is difficult to manually replicate exact probe locations (as well as
heights) over the tiny surface of a microcontroller (e.g., 0.7 cm × 0.7
cm) between training data acquisition and test data acquisition. An
example of discrepancies on EM signals caused by probe locations
is presented in Fig. 1 (in Sec. 3). In the context of side-channel
attacks, portability indicates the effectiveness of recovering keys in
cross-device evaluations given domain shifts between training and
test data.

Two recent studies [6, 9] have proposed to leverage pre-
processing [9] and unsupervised domain adaptation [6] to enhance
the portability of deep learning side-channel attackers over EM
traces, where domain shifts are caused by keys, hardware, and
probe locations. However, the findings from these existing studies
are limited to easy targets, such as 8-bit microcontrollers running
AES (Advanced Encryption Standard) with no countermeasures.
While there are studies [14, 52] examined domain shifts of EM traces
from more challenging targets (e.g., 32-bit microcontrollers), their
methods are limited to supervised domain adaptation (i.e., assuming
an attacker knows the key even before the attack, which is infea-
sible for real-world attackers). In addition, no large-scale public
datasets are available for the research community to benchmark,
reproduce, and compare different methods addressing domain shifts
caused by keys, hardware, and probe locations over EM traces.

In this study, we take a second look at domain shifts between
training and test data and investigate whether pre-processing and
unsupervised domain adaptation can promote the portability of
deep learning side-channel attacks over EM traces. Specifically,
we focus on domain shifts that are introduced by discrepancies in
keys, hardware, and probe locations. We explore more challeng-
ing targets (i.e., cases with lower side-channel leakage), including
32-bit microcontrollers and/or EM traces with random delay1 We
perform comparative analysis of existing (and new) pre-processing
and unsupervised domain adaptation methods given these domain
shifts. Pre-processing aims to mitigate domain shifts by identifying
significant features or transforming features into a different space
before passing data to a neural network. It addresses training data
and test data independently. On the other hand, domain adaptation
tackles domain shifts by jointly adjusting training data and test data
either during the training or after the training.

Our main efforts and findings are summarized below. We also
provide a high-level comparison between our work and three exist-
ing studies [6, 9, 28] that are most close to ours in Table 1.

1Our statistic analyses using Normalized Inter-Class Variance in Sec. 5 show that
traces from 32-bit microcontrollers and traces with random delays carry much lower
side-channel leakage than the ones from 8-bit microcontrollers.

• We leverage a customized acquisition setup built upon Chip-
Whisperer and establish a large-scale dataset of EM traces
across 9 probe locations from multiple microcontrollers, in-
cluding 8-bit AVR XMEGA and 32-bit ARM STM32F3, run-
ning unmasked AES-128. In addition, we generate EM traces
with random delay. The research community can leverage
our dataset to 1 reproduce our findings and 2 evaluate fu-
ture methods that can more effectively tackle domain shifts
over EM traces across different probe locations.

• We investigate and compare three existing pre-processing
methods, including Discrete Fourier Transform (DFT), Prin-
ciple Component Analysis (PCA), and Linear Discriminant
Analysis (LDA). The performance of these methods has been
discussed over EM traces from 8-bit microcontrollers in ex-
isting research [9] but not over EM traces from 32-bit micro-
controllers or EM traces with random delay.

• We examine and compare four domain adaptation meth-
ods, including Zero-Mean Unit-Variance Normalization
(MVN)2 [28], Maximum-Mean-Discrepancy Domain Adapta-
tion (MMD-DA) [6], Adversarial Domain Adaptation (ADA)
[47], and On-the-Fly Fine Tuning (FT). All the four meth-
ods are unsupervised — do not require labeled test traces in
the domain adaptation phase. We propose On-the-Fly Fine
Tuning in this paper while the other three were proposed in
previous studies to address domain shifts from less challeng-
ing targets [6, 28] or power traces [6, 47].

• Wehighlight two types of pitfalls, denoted as Type I and Type
II, that are often ignored in existing studies. Type I pitfalls
applying supervisedmethodswith labeled test traces in cross-
device evaluations3. Type II pitfalls ignore the number of
test traces that is required to learn statistical information but
only report attack results based on the number of test traces
in the test phase4. Carrying either type (or both) of the two
pitfalls would derive over-optimistic results in cross-device
evaluations.

• According to our experimental results, we have three ma-
jor observations. I Pre-processing and unsupervised do-
main adaptationmethods can improve the portability of deep

2Note that Zero-Mean Unit-Variance Normalization can also be considered as a pre-
processing method. We particularly consider it as a simple (feature-based) domain
adaptationmethod depending on how it is implemented and how its attack performance
is measured in our study.
3Possessing labeled test traces in advance suggests that an attacker knows the key
already before the attack. If that is the case, there is no need to perform the attack.
4For instance, if a method requires 2,000 test traces to learn feature means and feature
variances to adapt test data to a trained neural network, and this neural network can
rank the correct key as the top candidate with 100 test traces in the test phase based
on this domain adaptation, the number of test traces that is needed to recover the keys
should be 2,000 but not 100.

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

learning side-channel attacks over challenging targets. II
However, the effectiveness of each method varies depending
on the target and probe locations in use. Specifically, obser-
vations from easy targets do not necessarily generalize to
challenging targets. III None of the methods we examine
can always outperform others in our evaluation. In some
cases, even traditional attacks with Correlation Power Anal-
ysis [4] can derive the best attack results.

Reproducibility. Our source code and dataset are publicly avail-
able at https://github.com/UCdasec/CrossEM.

2 BACKGROUND
2.1 Side-Channel Attacks
Side-channel attacks can be categorized into profiling side-channel
attacks and non-profiling side-channel attacks. In a profiling side-
channel attack, an attacker has control of a training target, where
this attacker can choose the encryption key, select plaintexts (i.e.,
inputs of the encryption), and capture associated traces. A trace
is a sequence of samples when a target runs one execution of an
encryption algorithm given a plaintext and a key. In addition, this
attacker can capture traces and associated plaintexts on a test target
but it does not know the (fixed) encryption key on the test target.

The attack consists of two phases, the training phase (or profiling
phase) and the test phase (or attack phase). In the profiling phase,
the attacker trains a profile with labeled traces from the training
target. The labels are intermediate results of encryption (or the
Hamming Weights of these intermediate results), which can be
calculated based on the known key and plaintexts from the training
target by following the encryption algorithm. In the attack phase,
the attacker takes traces and plaintexts from the test target and
aims to recover the unknown key on the test target by leveraging
the trained profile. Deep learning side-channel attacks leverage
trained neural networks as profiles.

In a non-profiling attack, an attacker does not have access to a
training target to build a profile in advance. Instead, it only has un-
labeled traces from a test target to perform the attack. In this study,
we primarily focus on profiling side-channel attacks over EM traces
but also provide results from non-profiling attacks, such as Correlation
Power Analysis (CPA) [4], as baseline results for comparison.

2.2 Notations, Leakage Model, and Metrics
An EM trace (or trace for short) can be presented as a vector 𝑥 =

(𝑥 [0], ..., 𝑥 [𝑙 − 1]), where 𝑥 [𝑖] is the sample of EM signal from a
target at timestamp 𝑖 and 𝑙 is the number of samples of a trace.
Let M be the plaintext space and K be the key space. A trace 𝑥
is captured when a target runs encryption with plaintext𝑚 and
key 𝑘 , where𝑚 ∈ M and 𝑘 ∈ K . We use 𝑧 = 𝜑 (𝑚,𝑘) to denote
an intermediate value of encryption, where function 𝜑 (·) is an
intermediate step carrying side-channel leakage.

AES-128. We study side-channel attacks on targets running
AES-128, where an encryption key has 128 bits. The attack reveals
an entire 16-byte key using divide-and-conquer, where one key
byte is compromised each time. For the remaining of this paper, we
assume key 𝑘 , plaintext𝑚, or intermediate value 𝑧 has one byte
by following previous studies [30, 34]. Let 𝑘∗0 , 𝑘

∗
2 ,, 𝑘

∗
255 be all the

possible 256 key candidates. SubBytes of the 1st round of AES is
chosen as the leakage step 𝜑 (·) as in previous studies.

Leakage Model.We apply Hamming Weight (HW) model and
Identity (ID) model to formulate side-channel leakage [1, 34]. The
HW model assumes that there are correlations between EM signals
and the Hamming weight of an intermediate value. The label of a
trace 𝑡 is HW(𝑧) — the Hamming weight of the intermediate value
𝑧 = 𝜑 (𝑚,𝑘). There are 9 possible labels given the HWmodel. The ID
model assumes that there are correlations between EM signals and
the intermediate value itself. The label of a trace is the intermediate
value 𝑧, and there are 256 possible labels.

Evaluation Metrics. Given a profile and a trace, the test phase
outputs a score for every possible label. Then, each score is further
assigned to corresponding key candidate(s) based on the label, an
associated plaintext, and AES encryption algorithm. Every key
candidate’s scores across all the test traces are aggregated. As there
are 256 key candidates given one byte, 256 aggregated scores are
obtained and further sorted in a descending order.

We leverage Key Rank and Measurements To Disclosure (MTD)
to measure the effectiveness of side-channel attacks [31, 41]. Key
rank 𝑟 , where 𝑟 ∈ [1, 256], is the rank of the aggregated score of
the correct key among all the 256 key candidates given a certain
number of test traces. A key rank of 1 suggests that the correct
key has the highest score and the attacker distinguishes the key
correctly. MTD indicates the number of test traces that is needed
for the key rank to converge to 1 (i.e., it is distinguishable from
others). A lower MTD indicates the attack is more effective.

MTD of Profiling Attacks with Pre-Processing or Domain
Adaptation. Note that for profiling attacks with pre-processing or
domain adaptation, if statistical information (e.g., means, variances,
losses, etc.) of test traces are required to adjust a trained neural
network or transform test traces before the test phase, MTD should
be 𝑁 , the minimal number of test traces to learn required statistical
information, such that an attacker can distinguish the correct key
from incorrect key candidates within these 𝑁 test traces in the test
phase.

3 METHOD DESCRIPTION
In this section, we briefly describe pre-processing methods and
domain adaptation methods that are examined in this study.

3.1 Pre-Processing for Side-Channel Attacks
Existing studies [9, 15, 54] have shown that pre-processing sam-
ples and then passing processed data to neural networks offers
opportunities to improve attack results, even there are no or minor
domain shifts between training and test data. In this study, we in-
vestigate three pre-processing methods, including Discrete Fourier
Transform, Principal Component Analysis, and Linear Discriminant
Analysis, in the context of side-channel attacks.

While these three pre-possessing methods can reduce dimen-
sions of data by transforming data into different spaces, the trans-
formation of each method is fundamentally different. Specifically,
Discrete Fourier Transform can be performed on each trace inde-
pendently. Principal Component Analysis needs to be applied to a
set of unlabeled traces. Linear Discriminant Analysis requires a set
of labeled traces to perform dimension reduction.

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

Discrete Fourier Transform (DFT). By leveraging DFT, an
EM trace in the time domain is decomposed as a sum of a series of
sine waveforms with different frequencies, amplitudes, and phases.
Specifically, given a trace 𝑥 = (𝑥 [0], ..., 𝑥 [𝑙 − 1]), the DFT will
output a sequence of complex numbers (𝑋 [0], ..., 𝑋 [𝑙 − 1]), where
𝑋 [𝑗] is represented as

𝑋 [𝑗] =
𝑙−1∑︁
𝑛=0

𝑥 [𝑛] · 𝑒−
𝑖2𝜋 𝑗𝑛

𝑙

where 𝑥 [𝑛] is the sample at timestamp 𝑛, 𝑙 is the number of samples
in a trace, and 𝑗 ∈ [0, 𝑙 − 1] is the current frequency. As each 𝑋 [𝑗]
is a complex number, its amplitude can be calculated as:

𝑎𝑚𝑝 [𝑗] = |𝑋 [𝑗] |
𝑙

=

√︁
𝑅𝑒 (𝑋 [𝑗])2 + 𝐼𝑚(𝑋 [𝑗])2

𝑙

where 𝑅𝑒 (𝑋 [𝑗]) denotes the real part of 𝑋 [𝑗] and 𝐼𝑚(𝑋 [𝑗]) indi-
cates the imaginary part of 𝑋 [𝑗].

For side-channel attacks with DFT pre-processing, only ampli-
tudes from the positive frequencies of an EM trace, i.e., (𝑎𝑚𝑝 [0], ...,
𝑎𝑚𝑝 [𝑙 − 1/2]), will be utilized as an input of a neural network.
We leverage Fast Fourier Transform algorithm to perform DFT.
It is worth to mention that some existing studies [54] pre-select
amplitudes with higher values and discard the ones with lower
amplitudes rather than using all the amplitudes from positive fre-
quencies.We do not believe this extra step is necessary. It is because a
high amplitude in the frequency domain does not necessarily indicate
that the specific frequency carries high side-channel leakage.

Principle Component Analysis (PCA). PCA [18] is a clas-
sic dimension reduction method, which reduces the number of
dimensions of data. Specifically, PCA calculates means over fea-
tures and obtains a covariance matrix. Next, eigendecomposition is
applied to obtain eigenvectors and eigenvalues. A transformation
matrix is obtained by sorting and selecting eigenvectors with the
top eigenvalues. PCA is unsupervised — it does not require labels
when performing dimension deduction.

For side-channel attacks with PCA pre-processing, given a set
of training traces {𝑥0, ..., 𝑥𝑛−1}, where 𝑥𝑖 = (𝑥𝑖 [0], ..., 𝑥𝑖 [𝑙 − 1]),
PCA calculates a covariance matrix and its eigenvectors and then
outputs a set of traces, {𝑦0, ..., 𝑦𝑛−1}, where 𝑦𝑖 = (𝑦𝑖 [0], ..., 𝑦𝑖 [𝑟 −
1]) and 𝑟 ≪ 𝑙 . In other words, the number of traces in a dataset
remains the same but the number of dimensions of each trace is
significantly reduced. Each trace 𝑦𝑖 will be utilized as an input of a
neural network. In addition, PCA outputs a transformation matrix,
i.e., a 𝑙 × 𝑟 dimensional matrix𝑊 .

In this study, we leverage this matrix𝑊 to perform PCA over test
traces and report MTD as the number of test traces that is required
for key rank to converge to 1.

Type II Pitfall with PCA. Since PCA is an unsupervisedmethod,
learning a transformation matrix independently over unlabeled
test traces in cross-device evaluations is an alternative approach
to apply PCA over test traces. When reporting attack results with
this alternative approach, ignoring the number of test traces that
is needed for learning a (proper) transformation matrix would
be a Type II pitfall.

Linear Discriminant Analysis (LDA). LDA [12] is a dimen-
sion reduction method, which finds a linear combination of fea-
tures that can discriminate data from different classes. LDA first
computes means over features within each class and calculates
a between-class scatter matrix and a within-class scatter matrix.
Eigenvectors and eigenvalues are then derived based on the scatter
matrices. A transformation matrix is obtained by selecting eigen-
vectors with the top eigenvalues. As a result, LDA maps data into a
lower-dimensional space by maximizing the ratio of between-class
variance to within-class variance. In other words, LDA maximizes
the distance among class means and minimizes the variances within
each class. LDA is supervised — it requires labels when performing
dimensions deduction.

For side-channel attacks with LDA pre-processing, given a set
of training traces {𝑥0, ..., 𝑥𝑛−1} and their labels {𝑡0, ..., 𝑡𝑛−1}, where
𝑥𝑖 = (𝑥𝑖 [0], ..., 𝑥𝑖 [𝑙 − 1]) and 𝑡𝑖 is the label of 𝑥𝑖 , LDA outputs a set
of traces, {𝑦0, ..., 𝑦𝑛−1}, where 𝑦𝑖 = (𝑦𝑖 [0], ..., 𝑦𝑖 [𝑟 − 1]), 𝑟 ≪ 𝑙 , and
𝑡𝑖 is the label of 𝑦𝑖 . Each trace 𝑦𝑖 will be utilized as an input of a
neural network. In addition, LDA outputs a transformation matrix,
i.e., a 𝑙 × 𝑟 dimensional matrix𝑊 .

In this paper, we leverage this matrix𝑊 to perform LDA over test
traces and report MTD as the number of test traces that is needed for
key rank to converge to 1.

Type I Pitfall with LDA. Since LDA is a supervised method,
learning a transformation matrix independently over labeled test
traces in cross-device evaluations would be a Type I pitfall as test
traces are unlabeled to an attacker before the test/attack phase.

3.2 Domain Adaptation for Side-Channel
Attacks

We examine four domain adaptation methods, including Zero-Mean
and Unit-Variance Normalization, Maximum-Mean-Discrepancy
Domain Adaptation, Adversarial Domain Adaptation, and On-the-
Fly Fine Tuning. All of these are unsupervised — do not require
labeled test traces.

Zero-Mean and Unit-Variance Normalization (MVN). It is a
common normalization technique for signals and was examined as
a way of addressing domain shifts for Template Attacks over EM
traces in [28]. There are two equivalent ways of implementingMVN
as described in [28]. The first way is to normalize data indepen-
dently within each dataset based on feature means and variances.
The second way is to normalize test data based on feature means
and variances of training data. In other words, compared to the first
way, the second way does not need to know the feature means and
variances of test traces. We consider the second way as a domain
adaptation method in our study and present it as below.

Specifically, given a set of training traces {𝑥0, ..., 𝑥𝑛−1}, where
𝑥𝑖 = (𝑥𝑖 [0], ..., 𝑥𝑖 [𝑙−1]), MVN calculates a mean trace 𝜇 = (𝜇 [0], ...,
𝜇 [𝑙 − 1]) as

𝜇 [𝑗] = 1
𝑛

𝑛−1∑︁
𝑖=0

𝑥𝑖 [𝑗], for 0 ≤ 𝑗 ≤ 𝑙 − 1

and a variance trace as 𝑣 = (𝑣 [0], ..., 𝑣 [𝑙 − 1])

𝑣 [𝑗] = 1
𝑛

𝑛−1∑︁
𝑖=0

(𝑥𝑖 [𝑗] − 𝜇 [𝑗])2, for 0 ≤ 𝑗 ≤ 𝑙 − 1

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

(a) EM trace (Upper Left). (b) EM trace (Center). (c) Normalized EM Trace (Upper Left).

Figure 1: An example of Zero-Mean and Unit-Variance Normalization (normalizing a trace from upper left based on traces
from center, features from 1st round SubBytes of AES only, target: ARM STM32F3).

Similarly, MVN calculates a mean trace 𝜇′ and variance trace
𝑣 ′ over a set of test traces {𝑥 ′0, ..., 𝑥

′
𝑚−1}. Each test trace 𝑥 ′

𝑖
=

(𝑥 ′
𝑖
[0], ..., 𝑥 ′

𝑖
[𝑙 − 1]) is then normalized as below

𝑥 ′𝑖 [𝑗] =
𝑥 ′
𝑖
[𝑗] − 𝑢′ [𝑗]√︁

𝑣 ′ [𝑗]
·
√︁
𝑣 [𝑗] + 𝑢 [𝑗], for 0 ≤ 𝑗 ≤ 𝑙 − 1

Given normalized test traces and a trained profile derived from
training traces, the profile will output aggregated scores and report
key ranks in the test phase. For a profiling attack with MVN, MTD
is reported as 𝑁 , the minimal number of test traces that is needed to
learn feature means and variances of test traces, such that the key
rank can converge to 1 within these 𝑁 traces in the test phase.

Maximum-Mean-Discrepancy Domain Adaptation (MMD-
DA). Cao et al. [6] proposed an unsupervised domain adaptation
to address domain shifts for side-channel attacks using Maximum
Mean Discrepancy. We denote this method as MMD-DA in this
paper. Specifically, MMD-DA first trains a Convolutional Neural
Network with labeled training traces. Then, the last few layers of
the Convoltutional Neural Network (i.e., fully-connected layers)
are fine-tuned by using labeled training traces and unlabeled test
traces to minimize the Maximum Mean Discrepancy loss between
training and test traces.

After fine tuning with MMD, these unlabeled test traces are
passed to the tuned neural network to record key ranks. For a
profiling attack with MMD-DA, MTD is reported as 𝑁 , the minimal
number of test traces that is involved in the fine tuning phase, such
that the key rank can converge to 1 within these 𝑁 traces in the test
phase.

Adversarial Domain Adaptation (ADA). ADA [13, 44] trains
a domain adversarial network to learn a domain-invariant feature
space by leveraging generative adversarial learning [16]. A domain
adversarial network consists of three components, including a Fea-
ture Extractor, a Domain Discriminator, and a Source Classifier.
Each component is a neural network. During the training, Feature
Extractor takes labeled training data and unlabeled test data as
inputs and outputs domain-invariant features. In addition, Domain
Discriminator aims to distinguish data from two domains while
Source Classifier minimizes the loss on predicting the correct labels
of training data. The training process is formulated as a min-max
game between Feature Extractor and Domain Discriminator. Wang
et al. [47] recently leveraged ADA to address domain shifts caused
by software discrepancies over power traces in side-channel attacks.

For a profiling attack with ADA,MTD is recorded as𝑁 , the minimal
number of test traces that is used in the training phase, such that the
key rank can converge to 1 within these N traces in the test phase.

Type II Pitfall with MVN, MMD-DA, and ADA. Since each
domain adaptation method involves an adaptation/tuning phase
and a test phase to distinguish correct keys, reporting only the
number of test traces that is needed to recover keys in the test
phase as attack results would be a Type II pitfall. It is because suc-
cessfully recovering keys in the test phase relies on the number
of test traces that is needed in the adaptation/tuning phase.

On-the-Fly Fine Tuning (FT). Given a trained neural network,
Fine Tuning — tuning the last few layers with labeled test traces —
is a common method to address domain shifts. However, directly
applying it in the context of cross-device side-channel attacks would
result in a Type I pitfall as labels of test traces remain unknown
before attacks.

To avoid this pitfall while still being able to leverage Fine Tuning
in cross-device side-channel attacks, we extend Fine Tuning with an
existing technique named On-the-Fly Labeling [24, 43] (also known
as Partition-based Differential Power Analysis [42]). We denote our
method as On-the-Fly Fine Tuning. Specifically, given 𝑁 unlabeled
test traces and their plaintexts, guessed labels of these traces are
generated based on one key candidate. In essence, it produces a
partition of test traces based on the guessed labels generated by
this key candidate. Given this partition, the neural network trained
based on training traces is fine-tuned based on these test traces and
their guessed labels. The accuracy of these 𝑁 test traces over the
fined-tuned neural network is recorded accordingly based on the
guessed labels. The partition and fine tuning are repeated for 256
times, one for each key candidate.

Given all the 256 fine-tuned neural networks, the one with the
highest accuracy is considered as the one generated by the top key
candidate and that key candidate is ranked as 1 (i.e., the correct
key is distinguishable from others). In other words, accuracy based
on guessed labels serves as a Distinguisher in On-the-Fly FT. In
addition to accuracy, loss during fine tuning can also be utilized as
a Distinguisher. On-the-Fly Labeling has been introduce to non-
profiling attacks in previous studies [24, 43, 46].

For a profiling attack with On-the-Fly FT, MTD is reported as 𝑁 ,
the minimal number of test traces that is involved in the On-the-Fly
FT, such that the key rank can converge to 1 based on the selected
Distinguisher over these N traces.

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

A Combination of Type I and II Pitfalls with Fine Tuning.
Over-optimistic attack results would be derived if an evaluation
applies Fine Tuning with labeled test traces directly and reports
MTD as the number of test traces that is needed for the key rank
to converge to 1 in the test phase.

It is also worth to mention that ID model should not be leveraged
to assign guessed labels to produce partitions in On-the-Fly Labeling
[43, 46]. This is because the 256 partitions produced by the 256 key
candidates would be exactly the same given ID model, and there
would be no statistical differences among these 256 partitions (i.e.,
a Distinguisher would fail to identify the correct key from incorrect
ones regardless how this Distinguisher is chosen).

Comparison amongMVN, MMD-DA, ADA, and On-the-Fly
FT. Compared to MMD-DA and ADA, MVN or On-the-Fly FT only
requires an attacker to train a less complicated neural network, e.g.,
a Convolutional Neural Network (CNN). This can lead to much
shorter training time in the evaluation as training a CNN is less
time-consuming than training in ADA or MMD-DA5. In addition,
MVN or On-the-Fly FT only requires an attacker to train a profile
in advance with labeled training traces (i.e., without the need of
involving unlabeled test traces in the training phase). This can offer
better scalability in the evaluation. For instance, if a lower number
of test traces is not sufficient to reveal the key, MVN or On-the-Fly
FT can simply increase the number of test traces without retraining
a profile while ADA or MMD-DA needs to retrain the profile.

Compared to MVN, On-the-Fly FT does not require normalizing
test traces. On the other hand, as a tradeoff, On-the-Fly FT needs
to fine-tune a neural network over test traces for 256 times based
on the partitions of test traces, which leads to longer attack time. A
more detailed comparison in terms of attack time among the four
methods can be found in Sec. 5.

4 DATA COLLECTION AND DATASETS
We establish a customized EM data collection setup built upon
ChipWhisperer and acquire a large-scale dataset of EM traces from
microcontrollers running unmasked AES-128. ChipWhisperer is a
popular hardware toolset, which is primarily designed for collecting
power traces to perform side-channel attacks.While ChipWhisperer
offers the capability of acquiring EM traces (e.g., manually holding
CW505 Planar H-Field Probe on the top of a target), this setup does
not provide opportunities to capture relatively stable EM traces,
especially in a large scale.

Our EM Data Collection Setup. Besides CW-Lite, CW308 UFO
Board, and a target microcontroller fromChipWhisperer Level-1 Kit,
our setup also consists of additional hardware, including a Langer
EMV RF 7-4 Near-Field Probe, a Langer EMV PA 306 Amplifier, a
Keysight 3D Probe Holder, and a Riscure XYZ stage.

As presented in Fig. 2, we first leverage Riscure XYZ stage to
fasten ChipWhisperer CW308 UFO Board. A target microcontroller,
an AVR XMEGA (8-bit) or an ARM STM32F3 (32-bit), is mounted on
ChipWhisperer CW308 UFO Board. Next, we place a Langer EMV
RF K 7-4 Near-Field Probe around 5 millimeters above the center
of the target (as shown in Fig. 3) and utilize a Keysight 3D Probe
Holder to hold the probe. The probe captures EM traces from the

5For instance, training a CNN takes about 0.5 hours while training in ADA takes about
3 hours in our evaluation.

Figure 2: EM data collection setup

Figure 3: The EM probe positioning on top of the target.

Figure 4: AVR XMEGA (left) and the cells of 9 EM probe
locations (right) over it.

target and passes EM traces to ChipWhisperer Lite (and eventually
a PC) through the Langer EMV PA 306 Amplifier. We use the default
sampling rate for a target as the one used in ChipWhisperer’s power
trace collection6. We set the gain of the scope of ChipWhisperer as
60 (i.e., scope.gain.gain = 60).

Given a target, we evenly divide its surface into 9 cells (as shown
in Fig. 4) and we refer these cells as {C00, C01, C02, C10, C11, C12,
C20, C21, C22} respectively. We acquire EM traces from each of
these cells by adjusting the position of probe such that the probe
is roughly around the center of each cell. Two XMEGA targets
(denoted as X1 and X2) and two STM32F3 targets (denoted as S1
and S2) are involved in our data collection. The surface sizes of
XMEGA and STM32F3 are similar (i.e., both around 0.7cm × 0.7cm).
We always use different keys across two targets of the same type.We
utilize TinyAES, an unmasked C implementation of AES-128 from
ChipWhisperer repository, as the encryption algorithm running on
a target. This implementation is designed for small code size and
low memory usage, and it is widely used for embedded systems,
such as microcontrollers. We utilize cross-compilers (avg-gcc for
XMEGA and arm-none-eabi-gcc for STM32F3) to compile the
C code and produce binaries. We use O0 optimization when we
compile C code.
6The sampling rate of XMEGA is 29.34 MHz and the sampling rate of STM32 is 29.52
MHz. We run scope.clock.adc_freq command in ChipWhisperer script to obtain
these information.

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 2: Our CrossEM Dataset (3 million EM traces, 66 GBs).
Each subset contains 150,000 EM traces, 150,000 plaintexts,
and a key. Each trace consists of 5,000 samples.

X1_K1_C11 X2_K2_C00 X2_K2_C01 X2_K2_C02
X2_K2_C10 X2_K2_C11 X2_K2_C12
X2_K2_C20 X2_K2_C21 X2_K2_C22

S1_K1_C11 S2_K3_C00 S2_K3_C01 S2_K3_C02
S2_K3_C10 S2_K3_C11 S2_K3_C12
S2_K3_C20 S2_K3_C21 S2_K3_C22

Table 3: Encryption Keys Used in Our Dataset

K1 0x2b7e 1516 28ae d2a6 abf7 1588 09cf 4f3c
K2 0xaa80 d8a7 84d3 3f5c 0b90 a985 208e ff4a
K3 0xd2d5 0168 8283 9143 969e e9a2 53a7 52e1

Figure 5: An EM trace of AES-128 on XMEGA. It contains
5,000 samples from the beginning of AES-128 to almost the
halfway of MixColumn of the 1st round of AES-128.

Our CrossEM Dataset. Our dataset, denoted as CrossEM, con-
sists of 20 subsets with a total of 3 million EM traces (66 GBs).
Specifically, we collect a subset of 150,000 EM traces of AES-128
running on X1 with probe over cell C11. Next, we collect one subset
of 150,000 EM traces of AES-128 running on X2 with the probe
over each cell. We repeat the same process with S1 and S2. Each
EM trace consists of 5,000 samples. Each subset contains EM traces,
associated plaintexts, and an encryption key. The plaintexts and
keys are randomly generated. We use the following format to name
each subset, Target_Key_ProbeLocation. Alternatively, we also
use the format Target_ProbeLocation for simplicity. A summary
of our dataset is highlighted in Table. 2. An example of an EM trace
collected from XMEGA running AES-128 is presented in Fig. 5. In
addition, we also generate subsets with random delays by shifting
samples in every trace with a random value of 𝑟 , where 𝑟 ∈ [0, 20].

Points of Interest. We use Points of Interest (POI) to indicate
samples associated with the leakage step in a trace. For example,
𝑃𝑂𝐼 = [100, 400] suggests that measurements from timestamp 100
to timestamp 400 of a trace are associated with the leakage step. For
our dataset, we utilize the SubBytes of the first round of AES-128
as the leakage step. Specifically, we select 𝑃𝑂𝐼 = [1800, 2800] for
XMEGA and 𝑃𝑂𝐼 = [1200, 2200] for STM32. The POIs are identified
in advance by manually analyzing the pattern of EM traces (with
and without the leakage step in C code) as mentioned in [46, 47].
When we train a neural network, we only use samples within POI
of a trace as inputs and samples outside POI are skipped.

Table 4: Hyperparameters of CNN [1]

Conv 1 filters: 64; kernel size: 11; stride: 2; Relu
Conv 2 filters: 128; kernel size: 11; stride: 2; Relu
Conv 3 filters: 256; kernel size: 11; stride: 2; Relu

Conv 4∼5 filters: 512; kernel size: 11; stride: 2; Relu
AvgPool 1∼5 pooling size: 2; stride: 2
Dense 1∼2 No. of neurons: 4096; Relu
Output No. of neurons: 9 (HW) or 256 (ID); Softmax

Table 5: Hyperparameters of MLP [1]

Dense 1∼5 No. of neurons: 200; ReLU
Output No. of neurons: 9 (HW) or 256 (ID); Softmax

(a) Trace in the time domain. (b) Trace in the frequency domain.

Figure 6: An EM trace of AES-128 (1st round of SubBytes only)
on STM32F3 before and after applying DFT.

5 EVALUATION
5.1 Evaluation Settings
Details of Neural Networks.We examine two neural networks,
including a Convolutional Neural Network (CNN) and aMulti-Layer
Perceptron (MLP), for side-channel attacks in our evaluation. Both
architectures derived promising attack results over the well-known
ASCAD dataset [1]. The CNN includes 5 convolutional layers, 5
pooling layers, 2 fully connected layers, and 1 output layer. The
hyperparameters of this CNN are outlined in Table 4. The MLP
consists of 5 dense layers and 1 output layer. The hyperparameters
of this MLP are presented in Table 5.We implement neural networks
using TensorFlow 2.4.1 with CUDNN 11.11.

Experiment Details of Pre-possessingMethods. For Discrete
Fourier Transform, samples within the POI are utilized as inputs to
DFT, where 𝑙 = 1, 000. Each output from DFT consists of 𝑙/2 = 500
amplitudes from the positive frequencies. An example of an EM
trace (samples within POI only) on STM32F3 in the time domain
and its processed format in the frequency domain are presented in
Fig. 6. Note that the frequency with the high peak in the frequency
domain Fig. 6 is the clock frequency (7.38 MHz) of the target. It
does not indicate that high side-channel leakage happens at that
frequency. For PCA/LDA, given a trace of 1,000 POI samples, we
transform it into a trace of 256 features using PCA/LDA.

Experiment Details of Domain AdaptationWe implement
MVN and On-the-Fly FT using Python. We always fine tune the last
two layers given a CNN in On-the-Fly FT. For ADA, we leverage
the PyTorch source code from [47] where we use the CNN (except
the last layer) as Feature Extractor. For MMD-DA, we leverage
the PyTorch source code from [6] where its CNN has a different

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

(a) X1_C11 (b) X2_C00 (c) X2_C01 (d) X2_C02 (e) X2_C10

(f) X2_C11 (g) X2_C10 (h) X2_C20 (i) X2_C21 (j) X2_C22

Figure 7: NICVs over 10 subsets from XMEGA (no delays).

(a) S1_C11 (b) S2_C00 (c) S2_C01 (d) S2_C02 (e) S2_C10

(f) S2_C11 (g) S2_C12 (h) S2_C20 (i) S2_C21 (j) S2_C22

Figure 8: NICVs over 10 subsets from STM32F3 (no delays).

architecture than the one we use from ASCAD dataset. We denote
it as CNN∗ in the tables. CNN∗ consists of 3 convolutional layers
(with SELU activation), 3 average pooling layers, 2 fully connected
layers, and 1 output layer.

Experiment Setting.We conduct almost all the experiments on
a desktop with Ubuntu 22.04, an Intel i9-14900K CPU, 128 GB mem-
ory, and a NVIDIA 4080 GPU. In addition, a server (with Ubuntu
22.04, an AMD EPYC 7742 64-Core processor, 512 GB memory
and 4 NVIDIA A100 GPUs) is also utilized to run some large-scale
experiments (e.g., On-the-Fly FT) more efficiently. We randomly
select 3rd byte of an AES key7 and report attack results on it with
either the HW model or ID model, depending on which model
performs better. Specifically, we report results from the ID model
for all the methods (except MMD-AD and On-the-Fly FT) as our
preliminary results show that ID model outperforms HW model
in these methods. For MMD-AD, we record results from the HW
model as it outperforms the ID model in our preliminary results.

7The evaluation of existing studies typically focuses on one byte. If one byte can be
revealed, then it is sufficient to show the entire key (all the 16 bytes) can be recovered.
There is no obvious difference in terms of which specific byte is chosen for the target.

For On-the-Fly FT, we use the HW model only as the ID model is
not applicable.

When we train a neural network, we use 150 epochs. Given
a subset, we allocate 135,000 traces for training, 5,000 traces for
validation, and 10,000 traces for testing. The reported key ranks
and MTDs are average results by running tests 20 times over test
traces and randomly shuffling test traces each time.Whenwe report
results from domain adaptation methods, given 135,000 training
traces from the training target, at most 10,000 test traces from the
test target will be used for domain adaptation. We use divide and
conquer to find MTDs in these methods.

5.2 Experiments
Experiment 1: Measuring NICV over Our Dataset. We first
perform statics analysis, specifically Normalized Inner Class Vari-
ance (NICV) [3], to show that side-channel leakage presents but
may not be obvious, especially for challenging targets. Specifically,
given a subset of EM traces in our dataset, where each trace has
𝑙 samples, NICV does not recover keys but can output an NICV
value 𝛼 for every timestamp 𝑖 , where 𝛼 ∈ [0, 1] and 𝑖 ∈ [0, 𝑙 − 1]. A
higher NICV value indicates that the correlation between samples

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

Figure 9: NICVs over 10 subsets from XMEGA (with delay)

Figure 10: NICVs over 10 subsets from STM32F3 (with delay)

from the associated timestamp and intermediate values is higher —
side-channel leakage is higher.

As shown in Fig. 7, we observe that all the 10 subsets from
XMEGA carry obvious side-channel leakage (i.e., peaks with high
NICV values). This suggests that keys can be easily recovered from
these subsets. In Fig. 8, we observe that over half of the subsets from
STM32F3 carry relatively obvious peaks with reasonably high NICV
values. However, the NICV values are much lower than the ones
obtained from XMEGA. In addition, subsets from some locations
(e.g., C02 and C22) on STM32F3 do not show obvious side-channel
leakage. Overall, it demonstrates that STM32F3 is a more challeng-
ing target (i.e., carrying less side-channel leakage) than XMEGA.
This is expected as STM32F3 (32-bit) takes fewer instruction cycles
to execute a function with a wider data bus than XMEGA (8-bit),
which leads to less side-channel leakage in general. We also find
that it will be challenging to recover keys over subsets with random
delay as only extremely low NICV values (e.g., < 0.01 on XMEGA
and < 0.003 on STM32F3) are reported in Fig. 9 and Fig. 10. This
is also expected as the executions of the leakage function (i.e., 1st
round of SubBytes) are unsynchronized across traces due to random
delay.

Experiment 2: Side-Channel Attacks on XMEGA (No De-
lay). In this experiment, we investigate the results of deep learning
side-channel attacks over EM traces (no delay) from XMEGA. We
first report baseline results from the same device scenario, where
we use traces from X1_C11 as the training and test data. Next, we
present results from cross-device scenarios, where train traces are
from X1_C11 but test traces are from X2 with different keys and
locations. Attack results from CPA and Template Attacks over test
traces are also reported as baseline for comparison. We select 100
POIs for Template Attacks using the sum of difference [7]. Choosing
a greater number of POIs for Template Attacks is also possible but
requires significant computational overheads. In Fig. 11, we also
demonstrate that accuracy serves as a more effective Distinguisher
than loss in On-the-Fly FT, where a smaller number of test traces
is needed to identify the correct key. Therefore, we use accuracy as
the Distinguisher of On-the-Fly FT in all our experiments.

(a) Accuracy as Distinguisher (b) Loss as Distinguisher

Figure 11: Comparison between accuracy and loss on serving
as the Distingusigher in On-the-Fly FT (Train: X1_C11, Tune:
X2_C11). The correct key is distinguishable starting from 400
test traces with accuracy and from 500 test traces with loss.

As shown in Table 6, a neural network can easily recover keys
with 1 test trace in the same device scenario on XMEGA. We have
several main observations from cross-device scenarios. 1 The at-
tack performance of deep learning side-channel attacks drops when
there are discrepancies between the training and test data, where a
CNN orMLP requires a greater number of test traces to recover keys
or even fails to recover keys (e.g., X2_C00, X2_C12, and X2_C22)
on XMEGA. 2 All the three pre-processing methods, including
DFT, PCA, and LDA, can improve the attack results compared to
neural networks without pre-processing. However, this is only for
some subsets not all the subsets from X2. For instance, CNN still
performs the best over X2_C02 even compared to the ones obtained
from pre-processing or domain adaptation. 3 Among the three
pre-processing methods, not a single method can outperform the
others over all the 9 locations from X2. 4 MVN overall performs
the best compared to the other three domain adaptation methods
and can derive better results than CNN over some subsets (e.g.,
X2_C10, X2_C11, and X2_C20). 5 ADA and On-the-Fly FT can
derive better results than CNN and MLP but are less effective than
CPA over some subsets (e.g., X2_C00 and X2_C21).

Experiment 3: Side-Channel Attacks on STM32F3 (No De-
lay). In this experiment, we investigate the results of deep learning
side-channel attacks over EM traces (no delay) from STM32F3. Sim-
ilar as the last experiment, we first report baseline results from the
same-device scenario using S1_C11 and then report cross-device
scenarios by using the same trained neural network but different
subsets from S2 as test data. Attack results from CPA over test
traces are also reported for comparison.

As presented in Table 7, a CNN can easily recover keys with 21
test trace in the same device scenario on STM32F3 while MLP fails
to recover keys (unless LDA is applied). For cross-device scenarios, we
find that the observations on XMEGA from the previous experiment
do not always apply to subsets from STM32F3. More specifically, 1
compared to the observations from XMEGA, the domain shifts are
more severe from STM32F3, where the attacks recover keys with
a lower number of subsets. 2 Among the three pre-processing
methods, only LDA with MLP can achieve better results that CNN.
However, it is limited to one subset only (S2_C12). 3 Among the
four domain adaptation methods, MVN can achieve better results
than CNN over 3 subsets (S2_C01, S2_C10, and S2_C11). MMD-DA
can offer the best result over one subset (S2_C21). ADA can derive
better results than CNN but is less effective than CPA over one

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

Table 6: Attack Results in MTD (XMEGA, without Delay, Train: X1_C11, best results across different methods over each subset
are highlighted with bold font and ⊥ indicates failing to recover keys within 10,000 test traces)

Same Cross

Method
Test Data X1_C11 X2_C00 X2_C01 X2_C02 X2_C10 X2_C11 X2_C12 X2_C20 X2_C21 X2_C22

CPA 90 500 100 100 300 100 200 200 200 500
Template (ID) 14 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) 2 ⊥ 10 6 26 220 ⊥ 27 ⊥ ⊥
CNN (ID) + DFT 3 ⊥ 23 ⊥ ⊥ 181 ⊥ ⊥ ⊥ 152
CNN (ID) + PCA 1 ⊥ 196 63 1,072 98 ⊥ 723 ⊥ ⊥
CNN (ID) + LDA 1 ⊥ 8 9 1,643 23 9,995 95 ⊥ ⊥
MLP (ID) 1 ⊥ 282 263 ⊥ ⊥ ⊥ 27 ⊥ ⊥
MLP (ID) + DFT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + PCA 1 ⊥ ⊥ 1,164 ⊥ 3,257 ⊥ 3,734 ⊥ ⊥
MLP (ID) + LDA 1 ⊥ 217 126 5,812 88 ⊥ ⊥ ⊥ ⊥
CNN (ID) + MVN NA ⊥ 10 10 20 10 ⊥ 10 10,000 ⊥
CNN (ID) + ADA NA 2,000 500 1,000 500 500 ⊥ 500 1,500 10,000
CNN∗ (HW) + MMD-DA NA ⊥ 250 250 250 250 ⊥ 250 ⊥ ⊥
CNN (HW) + On-the-Fly FT NA ⊥ 300 100 400 200 ⊥ 1,000 5,000 1,000

Table 7: Attack Results in MTD (STM32F3, without Delay, Train: S1_C11, best results across different methods over each subset
are highlighted with bold font and ⊥ indicates failing to recover keys within 10,000 test traces)

Same Cross

Method
Test Data S1_C11 S2_C00 S2_C01 S2_C02 S2_C10 S2_C11 S2_C12 S2_C20 S2_C21 S2_C22

CPA 3,000 10,300 2,500 1,600 3,300 3,100 3,700 900 7,200 2,900
Template (ID) 20 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) 21 1,640 113 ⊥ 697 49 1,198 ⊥ ⊥ ⊥
CNN (ID) + DFT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) + PCA 37 ⊥ ⊥ ⊥ ⊥ 8,230 ⊥ ⊥ ⊥ ⊥
CNN (ID) + LDA 15 5,067 431 ⊥ 1,994 146 455 ⊥ ⊥ ⊥
MLP (ID) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + DFT/PCA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + LDA 17 ⊥ 6,875 ⊥ ⊥ 154 57 ⊥ ⊥ ⊥
CNN (ID) + MVN NA 2,000 30 ⊥ 30 20 2,000 ⊥ ⊥ ⊥
CNN (ID) + ADA NA ⊥ 1,500 ⊥ 1,000 1,500 1,000 10,000 ⊥ ⊥
CNN∗ (HW) + MMD-DA NA 6,000 2,000 ⊥ ⊥ 250 ⊥ ⊥ 5,000 8,000
CNN (HW) + On-the-Fly FT NA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

subset (e.g., S2_C20). On-the-Fly FT fails to recover keys over all
the 9 subsets.

Experiment 4: Side-Channel Attacks on XMEGA (with De-
lay). In this experiment, we compare the results of deep learning
side-channel attacks over EM traces (with delay) from XMEGA in
Table 8. The observations in cross-device evaluations are relatively
consistent with the ones from XMEGA without delay except the
following: 1 CPA or Template Attacks do not work anymore as
traces are misaligned due to delay; 2 ADA, MMD-DA, and On-the-
Fly FT can outperform other methods over one subset respectively;
3 There is one subset (X2_C00) that none of the methods can
recover keys.

Experiment 5: Side-Channel Attacks on STM32F3 (with
Delay). In this experiment, we compare the results of deep learning

side-channel attacks over EM traces (with delay) from STM32F3 in
Table 9. We have the following observations in cross-device eval-
uations. 1 CPA or Template Attacks do not work anymore. 2
CNN outperforms the ones with pre-processing or domain adap-
tation over two subsets (S2_C10 and S2_C12). 3 All the three
pre-processing methods fail to recover keys. 4 MVN and MMD-
DA can outperform other methods respectively over some subsets.
5 There are two subsets (S2_C02 and S2_C20) that none of the
methods can recover keys.

To summarize, we have the following overall findings regarding
the portability of deep-learning side-channel attacks over EM traces
from the results presented from Experiment 2 to Experiment 5:

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 8: Attack Results in MTD (XMEGA, with Delay, Train: X1_C11, best results across different methods over each subset are
highlighted with bold font and ⊥ indicates failing to recover keys within 10,000 test traces)

Same Cross

Method
Test Data X1_C11 X2_C00 X2_C01 X2_C02 X2_C10 X2_C11 X2_C12 X2_C20 X2_C21 X2_C22

CPA or Template (ID) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) 2 ⊥ 6 18 83 38 ⊥ 64 ⊥ ⊥
CNN (ID) + DFT 7 ⊥ 82 75 37 61 ⊥ 1,133 ⊥ 59
CNN (ID) + PCA 3 ⊥ 4,267 ⊥ 4,887 8,585 ⊥ ⊥ ⊥ ⊥
CNN (ID) + LDA ⊥ ⊥ ⊥ ⊥ ⊥ 9,984 ⊥ ⊥ ⊥ ⊥
MLP (ID) 1 ⊥ ⊥ ⊥ ⊥ 1,669 ⊥ ⊥ ⊥ ⊥
MLP (ID) + DFT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + PCA 1 ⊥ 5,614 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + LDA 4 ⊥ 53 365 1,075 1,162 ⊥ 212 5,871 ⊥
CNN (ID) + MVN NA ⊥ 40 20 20 200 ⊥ 50 ⊥ 200
CNN (ID) + ADA NA ⊥ 500 500 500 500 ⊥ 500 1,000 ⊥
CNN∗ (HW) + MMD-DA NA ⊥ 250 250 250 250 5,000 ⊥ ⊥ ⊥
CNN (HW) + On-the-Fly FT NA ⊥ 500 300 3,500 400 ⊥ 2,000 1,000 10,000

Table 9: Attack Results in MTD (STM32F3, with Delay, Train: S1_C11, best results across different methods over each subset are
highlighted with bold font and ⊥ indicates failing to recover keys within 10,000 test traces)

Same Cross

Method
Test Data S1_C11 S2_C00 S2_C01 S2_C02 S2_C10 S2_C11 S2_C12 S2_C20 S2_C21 S2_C22

CPA or Template (ID) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) 24 3,006 3,006 ⊥ 639 821 1,590 ⊥ ⊥ ⊥
CNN (ID) + DFT/PCA/LDA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) 1,166 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + DFT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + PCA 169 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
MLP (ID) + LDA 37 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN (ID) + MVN NA 2,000 1,000 ⊥ 2,000 30 2,000 ⊥ ⊥ ⊥
CNN (ID) + ADA NA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CNN∗ (HW) + MMD-DA NA 6,000 2,000 ⊥ ⊥ 250 ⊥ ⊥ 5,000 9,000
CNN (HW) + On-the-Fly FT NA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

I Pre-processing and unsupervised domain adaptation meth-
ods can improve the portability of deep learning side-channel at-
tacks on challenging targets. II The effectiveness of each method
varies depending on the target and probe locations in use. Specifi-
cally, observations from easy targets do not necessarily generalize
to more challenging targets. III None of the methods can con-
stantly outperform others in our evaluation. In some cases, even
traditional attacks with CPA can derive the best attack results.

Given domain shifts between training and test EM traces in
general, we suggest that a fair evaluation should experimentally
explore all these pre-processing and domain adaptation methods to
determine which method can achieve the best attack results. On the
other hand, we recommend exploring other methods first before
performing On-the-Fly FT as it is time consuming in the attack
phase compared to other methods. The computation overhead of
each domain adaptation method on our desktop (with a NVIDIA
4080 GPU) is presented in Table. 10 as a reference for comparison.

Table 10: Computational overhead among domain adaptation
methods (given 10,000 test traces and a CNN trained with
135,000 training traces)

Method MVN ADA MMD-DA On-the-Fly FT
Time (hours) 0.3 0.5 0.4 28

Pre-processing methods all perform efficiently in our experiments
and we skip their detailed running time.

Experiment 6: Examples of Over-Optimistic Results from
Type I and II Pitfalls. In this experiment, we provide examples
reporting over-optimistic results when there are Type I and/or Type
II pitfalls in cross-device evaluations. Specifically, we examine two
cases, including MMD-DA with Type II and Fine-Tuning with Type
I and II, and we compare these over-optimistic results with the ones
we obtain from previous experiments.

For MMD-DA with Type II, we assume that an attacker performs
MMD-DA with 135,000 training traces and (at most) 10,000 unla-
beled test traces in the domain adaptation phase. then it reports the

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

Table 11: Comparison of Attack Results in MTD (No pitfalls v.s. with pitfalls, XMEGA, without Delays, Train: X1_C11, over-
optimistic results due to pitfalls are highlighted in red)

Method
Test Data X2_C00 X2_C01 X2_C02 X2_C10 X2_C11 X2_C12 X2_C20 X2_C21 X2_C22

CNN (ID) ⊥ 10 6 26 220 ⊥ 27 ⊥ ⊥
CNN∗(HW) + MMD-DA ⊥ 250 250 250 250 ⊥ 250 ⊥ ⊥
CNN∗(HW) + MMD-DA + Type II ⊥ 45 24 34 45 ⊥ 150 ⊥ ⊥
CNN (HW) + On-the-Fly FT ⊥ 300 100 400 200 ⊥ 1,000 5,000 1,000
CNN (HW) + FT + Type I & II 2,541 11 12 88 18 558 61 182 417

MTD as the number of test traces when key rank converges to 1
in the test phase but ignore the number of test traces used in the
domain adaptation phase (Type II). For Fine Tuning with Type I and
II, we assume that an attacker performs fine tuning directly on a
trained CNN with 10,000 labeled test traces (Type I) and reports the
MTD as the number of test traces when key rank converges to 1 in
the test phase (Type II). As illustrated in Table 11, over-optimistic
attack results would be derived in each method. For instance, one
would have a wrong conclusion that Fine Tuning is the best ap-
proach to overcome domain shifts in the context of side-channel
attacks over EM traces due to these pitfalls. It is worth mentioning
that several studies [14, 52] applying Fine Tuning with Type I and
II pitfalls when addressing domain shifts in side-channel attacks.
Their conclusions, as a consequence, are obviously over-optimistic.

Experiment 7: Quantifying Domain Shifts. In this experi-
ment, we quantify domain shifts between training traces and test
traces and investigate whether the degree of domain shifts corre-
lates with attack performance (e.g., does a more severe domain shift
indicate that it is more challenging to recover keys?). Specifically,
we quantify domain shifts by measuring the Euclidean distance 𝑑
between mean trace 𝜇 = (𝜇 [0], ..., 𝜇 [𝑙 − 1]) of training traces and
mean trace 𝜇′ = (𝜇′ [0], ..., 𝜇′ [𝑙 − 1]) of test traces, where

𝑑 =

√√√√𝑙−1∑︁
𝑗=0

(𝜇 [𝑗] − 𝜇′ [𝑗])2

We measure the Euclidean distance between training traces of
S1_C11 and test traces of every subset from S2. We summarize
the distances in Fig. 12a. In addition, we also summarize MTDs
obtained from CNN (ID model) and MTDs derived from the best re-
sults among the domain adaptation methods we use in Experiment
3 over these 9 probe locations. From Fig. 12a, we observe that 1
Euclidean distance can serve as an indicator of attack performance
in general, where a small distance likely results in a small MTD
and a great distance likely end up with a great MTD (or even fail to
recover keys); 2 However, there is no linear correlation between
Euclidean distance and attack performance in MTD. We have con-
sistent observations from Fig. 12b based on distance and results
from traces with delay on STM32F3.

6 DISCUSSIONS AND LIMITATIONS
Given the observation that none of the existing methods can con-
stantly outperform others in this paper, we believe that more efforts
are needed from the research community to develop new meth-
ods, especially new unsupervised methods (i.e., methods that do

(a) STM32F3 (no delays)

(b) STM32F3 (with delays)

Figure 12: Distance between training traces (S1_C11) and test
traces (S2_CXX), where each cell XX ∈ {00, 01, 10, 10, 11, 12,
20, 21, 22} is consistent with the one defined in Fig. 4. Darker
color indicates a smaller distance or MTD.

not require labeled test traces), to more effectively address domain
shifts of EM traces caused by probe locations. We believe that our
EM acquisition setup, dataset, and source code serve as stepping
stones for future work to expand our findings and demonstrate the
effectiveness of new methods in this line of research.

Future research should also further explore results from more
challenging targets, such as FPGAs and masked AES, given domain
shifts of EM traces caused by probe locations. Specifically, although
recovering keys on these targets (given traces from the same probe
location) is feasible with deep learning from as shown in recent
research [27], it requires more comprehensive neural network ar-
chitectures and learning processes. For instance, recovering keys
from a masked AES implementation on STM32 from ASCADv2
dataset requires a comprehensive ResNet rather than a CNN [27]. It
remains unknown whether existing unsupervised domain adapta-
tion methods can be integrated into these complex neural networks
to tackle domain shifts of EM traces.

As mentioned, we observe that the effectiveness of each method
varies depending on the target and probe location in use. We be-
lieve that it is mainly because the placements of the data bus and
the Arithmetic Logic Unit (ALU) are different across different tar-
gets due to distinct hardware designs. Both data exchange on the
data bus and executions inside the ALU are the major factors that
contribute to the change of power consumption (as well as EM

A Second Look at the Portability of Deep Learning Side-Channel Attacks over EM Traces RAID 2024, September 30–October 02, 2024, Padua, Italy

emanations) when calculating intermediate results of encryption
on a target [26]. A probe location that is closer to the data bus and
ALU, in general, can capture EM traces with higher leakage.

In our current acquisition setup, we manually place a probe over
one of the 3 by 3 cells on the tiny surface of a microcontroller. A
more fine-grained grid, e.g., 4 by 4 cells or 10 by 10 cells, can be
achieved but (preferably) with the need of additional equipment
to accurately place a probe over the top of each cell and move a
probe at a millimeter scale. For instance, this can done by leveraging
Riscure’s XYZ table, its software, and its high precision EM probe.
An alternative way is to build a customized setup by integrating a
3D printer into the EM acquisition of ChipWhisperer as described
in [8]. These setups require either expensive cost on equipment or
significant engineering efforts.

While we do not specifically perform evaluation over EM traces
from other implementations of unmasked AES, we expect that,
given a different unmasked implementation, our observations be-
tween training data and test data across different probe positions
will still apply as the encryption algorithm as well as the executions
of the leakage step (e.g., 1st round of SubBytes) remain the same.

There are other factors that can contribute to domain shifts over
EM traces. For instance, utilizing different types of probes (e.g.,
Langer v.s., Tekbox) between training acquisition and test acquisi-
tion would affect the measurements of EM signals, and therefore
lead to domain shifts for side-channel attacks. While we try our
best to report the most effective attack results of each method based
on the implementations we have, we believe that it is still possible
to further improve the performance of each method. For instance,
neural network architecture search is a promising approach to find
the best CNN model to perform side-channel attacks [37]. On the
other hand, how to perform neural network architecture search
such that the model can overcome domain shifts, specifically for
side-channel attacks, remains unknown.

Besides pre-processing and domain adaptation, existing research
[2, 9] has shown that multi-domain training (e.g., training with
traces from multiple targets or locations) is also an effective ap-
proach to mitigate domain shifts. However, it requires collecting
large-scale datasets from multiple acquisitions in advance and may
not be scalable considering all the factors (hardware, keys, software,
acquisition setups, etc.) that could lead domain shifts.

7 RELATEDWORK
Deep Learning Side-Channel Attacks. Maghrebi et al. [25] first
demonstrated that CNNs can outperform Template Attacks. Cagli
et al. [5] suggested that CNNs can effectively recover keys over
traces with random delay. Benadjila et al. [1] leveraged MLPs and
CNNs in side-channel attacks and demonstrate that CNNs can
defeat masking. They also introduce ASCAD dataset, which has
been prominently used for benchmarking and comparison of deep
learning side-channel attacks (same-device evaluations). Besides
portability, other important aspects of deep learning side-channel
attacks, such as explainability [45], synthetic trace generation [51],
imbalance of data (with HW model) [33], hyperparameter tuning
[29, 37, 50], attackingmultiple bytes simultaneously [49], andmodel
compression [22, 32], have been examined. Large Language Models
[20] and Transformer Networks [17] are recently introduced to

improve the effectiveness of side-channel attacks over traces with
countermeasures. Li et al. [22] investigated structure pruning to
reduce the size of neural networks for side-channel attacks.

Machine learning side-channel attacks can recover keys from
other encryption algorithms, such as Kyber KEM (a post-quantum
public-key encryption) [35], Ascon (a lightweight authenticated
cipher) [36], and SNOW-V (a stream cipher in 5G) [39]. Some recent
research [23, 41] utilized deep learning for pre-silicon side-channel
attacks over power traces simulated at the RTL (Register-Transfer
Level) or netlist level to identify leakage during the design stage. It
is also feasible to perform non-profiling attacks with deep neural
networks [21, 40, 43]. Two comprehensive surveys on deep learning
side-channel attacks can be found in [30, 34].

Portability of Profiling Side-Channel Attacks. Many exist-
ing studies [2, 9–11, 14, 15, 38, 47, 48, 52–54] have investigated the
portability of side-channel attacks when there are domain shifts
between training and test data. Bhasin et al. [2] proposed to train
neural networks with power traces from multiple targets to miti-
gate domain shifts between training and test traces in side-channel
attacks. Danial et al. [9] trained neural networks with EM traces
from multiple probe locations and also utilized pre-processing, in-
cluding DFT, PCA, or LDA to address domain shifts. Rioja et al.
[38] proposed a similarity method based on Dynamic Time Warp-
ing to quantify domain shifts. Wang et al. [47] examined domain
shifts caused by inconsistent software settings between training
and test targets (e.g., O0 vs. O1 optimization). Yu et al. [52] utilized
meta-transfer learning to address domain shifts. Genevey-Metat
et al. [14] examined fine tuning to address domain shifts over EM
and power traces from STM32 microcontrollers. However, both of
the two methods [14, 52] require labeled test traces (i.e., Type 1 pit-
falls), which is impractical for real-world attackers in cross-device
evaluations. Yu et al. [53] proposed to leverage a pre-trained neural
network to produce synthetic labels for test traces and then fine
tune the pre-trained neural network based on these test traces with
synthetic labels for cross-device evaluations. However, it does not
consider domain shifts caused by probe positions.

8 CONCLUSION
We investigate the portability of deep learning side-channel attacks
over EM traces given domain shifts caused by hardware, keys,
and probe locations. Moreover, we conduct comparative analysis
over a set of pre-processing and unsupervised domain adaptation
methods. Our findings suggest that these methods can improve the
portability of deep-learning side-channel attacks on challenging
targets. However, the effectiveness of eachmethod varies depending
on the target and probe locations. A large-scale and comprehensive
dataset of EM traces is established for the research community to
reproduce and expand our findings.

ACKNOWLEDGMENTS
The authors thank the anonymous shepherd and reviewers for their
comments and suggestions. This work was partially supported by
National Science Foundation (CNS-2150086, CNS-2225160, CNS-
2238680) and CHEST – NSF IUCRC Center for Hardware and Em-
bedded System Security and Trust (CNS-1916722).

RAID 2024, September 30–October 02, 2024, Padua, Italy M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, J. Emmert

REFERENCES
[1] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas. 2020. Deep learn-

ing for side-channel analysis and introduction to ASCAD database. Journal of
Cryptographic Engineering 10, 2 (2020).

[2] S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R. Shrivastwa. 2020.
Mind the Portability: A Warriors Guide through Realistic Profiled Side-channel
Analysis. In Proc. of NDSS’20.

[3] S. Bhasin, J. Danger, S. Guilley, and Z. Najm. 2014. NICV: Normalized inter-class
variance for detection of side-channel leakage. In 2014 International Symposium
on Electromagnetic Compatibility.

[4] E. Brier, C. Clavier, and F. Olivier. 2004. Correlation Power Analysis with a
Leakage Model. In Proc. of CHES’04.

[5] E. Cagli, C. Dumas, and E. Prouff. 2017. Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures. In Proc. of CHES’17.

[6] P. Cao, C. Zhang, X. Lu, and D. Gu. 2021. Cross-Device Profiled Side-Channel At-
tack with Unsupervised Domain Adaptation. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021, 4 (2021), 27 – 56.

[7] S. Chari, J. R. Rao, and P. Rohatgi. 2002. Template Attacks. In Proc. of Cryptographic
Hardware and Embeeded Systems (CHES 2002).

[8] J. Danial, D. Das, S. Ghosh, A. Raychowdhury, and S. Sen. 2020. SCNIFFER:
Low-Cost, Automated, Efficient Electromagnetic Side-Channel Sniffing. IEEE
Access (2020).

[9] J. Danial, D. Das, A. Golder, S. Ghosh, A. Raychowdhury, and S. Sen. 2022. EM-X-
DL: Efficient Cross-device Deep Learning Side-channel Attack with Noisy EM
Signatures. ACM Journal on Emerging Technologies in Computing Systems 18, 1
(2022), 1–17.

[10] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen. 2019. X-
DeepSCA: Cross-Device Deep Learning Side Channel Attack. In Proc. of 56th
ACM/IEEE Design Automation Conference (DAC’19).

[11] M. Elaabid and S. Guilley. 2012. Portability of templates. Journal of Cryptographic
Engineering 2 (2012), 63–74.

[12] R. A. Fisher. 1936. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics (1936).

[13] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, and V. Lempitsky. 2016. Domain-Adversarial Tranining of Neural
Networks. Journal of Machine Learning Research (2016).

[14] C. Genevey-Metat, A. Heuser, and B. Gerard. 2021. Train or Adapt a Deeply
Learned Profile?. In Proc. of International Conference on Cryptology and Informa-
tion Security in Latin America (Latin Crypt’21).

[15] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, andA. Raychowdhury. 2019. Practical
Approaches Towards Deep-Learning Based Cross-Device Power Side Channel
Attack. IEEE. Trans. on Very Large-Scale Integration (VLSI) Systems 27, 12 (2019).

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Networks. In Proc. of the
International Conference on Nerual Information Processing Systems (NIPS 2014).

[17] S. Hajra, S. Chowdhury, and D. Mukhopadhyay. 2024. EstraNet: An Efficient
Shift-Invariant Transformer Network for Side-Channel Analysis. TCHES (2024).

[18] I.T. Jolliffe. 2002. Principal Componenet Analysis. Springer Series in Statistics
(2002).

[19] P. Kocher, J. Jaffe, and B. Jun. 1999. Differential Power Analysis. In Proc. of
CRYPTO’99.

[20] P. Kulkarni, V. Verneuil, S. Picek, and L. Batina. [n. d.]. Order vs.
Chaos: A Language Model Approach for Side-channel Attacks. ([n. d.]).
https://eprint.iacr.org/2023/1615.pdf.

[21] D. Kwon, H. Kim, and S. Hong. 2021. Non-Profiled Deep Learning-based Side-
Channel Preprocessing with Autoencoders. IEEE Access (2021).

[22] H. Li, M. Ninan, B. Wang, and J. M. Emmert. 2024. TinyPower: Side-Channel
Attacks with Tiny Neural Networks. In Proc. of IEEE HOST’24.

[23] L. Lin, D. Zhu, J. Wen, H. Chen, Y. Lu, N. Cheng, C. Chow, H. Shrivastav, C. W.
Chen, K. Monta, and M. Nagata. 2021. Multiphysics Simulation of EM Side-
Channels from Silicon Backside with ML-based Auto-POI Identification. In IEEE
HOST’21.

[24] X. Lu, C. Zhang, and D. Gu. 2021. Attention - Based Non-Profiled Side-Channel
Attack. In Proc. of 2021 Asian Hardware Oriented Security and Trust Symposium
(AsianHost).

[25] H. Maghrebi, T. Portigliatti, and E. Proff. 2016. Breaking cryptographic imple-
mentations using deep learning techniques. In Proc. of International Conference
on Security, Privacy and Applied Cryptography Engineering (SPACE’16).

[26] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer New York.

[27] Loic Masure and Remi Strullu. 2023. Side-channel analysis against ANSSI’s pro-
tected AES implementation on ARM: end-to-end attacks tih multi-task learning.
Journal of Cryptographic Engineering 13 (2023), 129–147.

[28] D. P. Montminy, R. O. Baldwin, M. A. Temple, and E. D. Laspe. 2013. Improving
cross-device attacks using zero-mean unit-variance normalization. Journal of
Cryptographic Engineering (2013).

[29] S. Nouraniboosjin and F. Ganji. [n. d.]. Too Hot To Be True: Temperature Cal-
ibration for Higher Confidence in NN-assisted Side-channel Analysis. ([n. d.]).
https://eprint.iacr.org/2024/071.pdf.

[30] M. Panoff, H. Yu, H. Shan, and Y. Jin. 2022. A Review and Comparison of AI-
enhanced Side Channel Analysis. J. Emerg. Technol. Comput. Syst. (2022).

[31] K. Papagiannopoulos, O. Glamocanin, M. Azouaoui, D. Ros, F. Regazzoni, and M.
Stojilovic. 2023. The Side-channel Metrics Cheat Sheet. ACM Computing Surveys
55, 10 (2023).

[32] G. Perin, L. Wu, and S. Picek. 2022. Gambling for Success: The Lottery Ticket
Hypothesis in Deep Learning-Based Side-Channel Analysis. Artificial Intelligence
for Cybersecurity (Springer) (2022).

[33] S. Picek, A. Heuser, A. Jovic, and F. Regazzoni. 2019. The Curse of Class Imbalance
and Conflicting Metrics with Machine Learning for Side-channel Evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 1 (2019),
209–237.

[34] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina. 2023. SoK: Deep Learning-based
Physical Side-channel Analysis. ACM Computing Surveys 55, 11 (2023).

[35] P. Ravi, D. Jap, S. Bhasin, and A. Chattopadhyay. [n. d.]. Machine Learning based
Blind Side-Channel Attacks on PQC-based KEMs - A case Study of Kyber KEM.
([n. d.]). https://eprint.iacr.org/2024/169.

[36] A. Rezaeezade, A. Basurto-Becerra, L. Weissbart, and G. Perin. [n. d.]. One for All,
All for Ascon: Ensemble-based Deep Learning Side-channel Analysis. ([n. d.]).
https://eprint.iacr.org/2023/1922.pdf.

[37] J. Rijsdijk, L. Wu, G. Perin, and S. Picek. 2021. Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2021).

[38] U. Rioja, L. Batina, and I. Armendariz. 2020. When Similarities Among Devices
are Taken for Granted: Another Look at Portability. In Proc. of AFRICACRYPT
2020. 337 – 357.

[39] H. Saurabh, A. Golder, S. S. Titti, S. Kundu, C. Li, A. Karmakar, and D. Das.
[n. d.]. SNOW-SCA: ML-assisted Side-Channel Attack on SNOW-V. ([n. d.]).
https://eprint.iacr.org/2024/428.pdf.

[40] I. Savu, M. Krcek, G. Perin, L. Wu, and S. Picek. [n. d.]. The Need for MORE:
Unsupervised Side-channel Analysis with Single Network Training and Multi-
output Regression. ([n. d.]). https://eprint.iacr.org/2023/1681.pdf.

[41] D. Shanmugam and P. Schaumont. 2023. Improving Side-Channel Leakage As-
sessment Using Pre-Silicon Leakage. In International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE).

[42] F. Standaert, B. Gierlichs, and I. Verbauwhede. 2008. Partition v.s. Comparison
Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for
Univariate Side-Channel Attacks against Two Unprotected CMOS Devices. In
Information Security and Cryptology – ICISC 2008.

[43] B. Timon. 2019. Non-Profiled Deep Learning-based Side-Channel Attacks with
Sensitivity Analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019, 2 (2019), 107–131.

[44] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative
Domain Adaptation. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[45] D. van der Valk, S. Picek, and S. Bhasin. 2020. Kilroy Was Here: The First Step
Towards Explainability of Neural Networks in Profiled Side-Channel Analysis. In
International Workshop on Constructive Side-Channel Analysis and Secure Design.

[46] C. Wang, J. Dani, S. Reilly, A. Brownfield, B. Wang, and J. M. Emmert. 2023.
TripletPower: Deep-Learning Side-Channel Attacks over Few Traces. In Proc. of
IEEE HOST’23.

[47] C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Em-
mert. 2023. Portability of Deep-Learning Side-Channel Attacks against Software
Discrepancies. In Proc. ACM WiSec’23.

[48] H. Wang, M. Brisfors, S. Forsmark, and E. Dubrova. 2019. How Diversity Affects
Deep-Learning Side-Channel Attacks. In 2019 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC).

[49] L. Wu, A. Ali-Pour, A. Rezaeezade, G. Perin, and S. Picek. [n. d.]. Breaking
Free: Leakage Model-free Deep Learning-based Side-channel Analysis. ([n. d.]).
https://eprint.iacr.org/2023/1110.

[50] T. Yap, S. Bhasin, and L. Weissbart. [n. d.]. Train Wisely: Multifidelity
Bayesian Optimization Hyperparameter Tuning in Side-Channel Analysis.
([n. d.]). https://eprint.iacr.org/2024/170.pdf.

[51] T. Yap and D. Jap. [n. d.]. Creating from Noise: Trace Generations Using Diffusion
Model for Side-Channel Attack. ([n. d.]). https://eprint.iacr.org/2024/167.pdf.

[52] H. Yu, H. Shan, M. Panoff, and Y. Jin. 2021. Cross-Device Profiled Side-Channel
Attacks using Meta-Transfer Learning. In Proc. of the 58th ACM/IEEE Design
Automation Conference (DAC’21).

[53] H. Yu, S. Wang, H. Shan, M. Panoff, M. Lee, K. Yang, and Y. Jin. 2023. Dual-Leak:
Deep Unsupervised Active Learning for Cross-Device Profiled Side-Channel
Leakage Analysis. In Proc. of IEEE HOST’23.

[54] F. Zhang, B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, and K. Ren. 2020. From
Homogeneous to Heterogeneous: Leveraging Deep Learning based Power Anlysis
across Devices. In Proc. of 57th ACM/IEEEDesign Automation Conference (DAC’20).

	Abstract
	1 Introduction
	2 Background
	2.1 Side-Channel Attacks
	2.2 Notations, Leakage Model, and Metrics

	3 Method Description
	3.1 Pre-Processing for Side-Channel Attacks
	3.2 Domain Adaptation for Side-Channel Attacks

	4 Data Collection and Datasets
	5 Evaluation
	5.1 Evaluation Settings
	5.2 Experiments

	6 Discussions and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

