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Abstract

With Knowledge Graph (KG) increasingly applied in various fields,
the integration of KG has gained significant attention to augment
the knowledge-specific task capabilities of language models (LMs).
However, constructing and maintaining large KGs, much like LMs,
can be expensive and challenging, often requiring extensive do-
main knowledge and human resources. This makes KG a valuable
resource potentially vulnerable to theft threats from attackers. In
this paper, we present KGDist, the first prompt-based KG distil-
lation technique for extracting KG knowledge from KG+LM aug-
mented models. Through iterations of prompt-based queries, we
can steal a substitute KG containing task domain knowledge from
the original KG. First of all, we initialize entities from a small scale
task-specific corpus. Then, we construct specific task prompts for
querying the victim LMs. According to the model outputs, we iter-
atively select entities showing strong correlation and reconstruct
the relation edges for subsequent prompt crafting. We also propose
a multi-granularity prompt construction method for reducing the
querying cost. After acquiring the extracted KG, we launch a rela-
tion type-based pruning to cut off redundant edges forming cycles
decreasing the performance of distilled KGs. We evaluate the effec-
tiveness of KGDist on five benchmark KG+LM models designed
for various tasks. Results demonstrate that our attack successfully
extracts the distilled KGs with minimal performance degradation
(under 2.4%) applied on LMs and less storage space. And also, the
mechanism we apply greatly saves API queries compared to brute
force method. In addition, further experiments demonstrate that
we can split the KG knowledge from the LM noises effectively, and
the distilled KGs have similar properties in knowledge distribution
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1 Introduction

Over the past few years, the landscape of natural language process-
ing has been dramatically reshaped by the advent of pre-trained Lan-
guage Models (LMs) such as BERT [14], RoBERTa [38], XLNet [77],
and GPT-4 [45]. Their unparalleled performance spans a multitude
of applications across various industries, educational landscapes,
and professional spheres. However, their prowess, while impres-
sive, is not without limitations. The presence of irrelevant or noisy
information within the training data can dilute the model’s focus,
thus affecting its efficacy in generating accurate predictions [39].
Additionally, the insufficient coverage of domain-specific or ex-
pert knowledge restricts their applicability in specialized areas.
Meanwhile, the static nature of their training datasets means that
these traditional LMs are not designed to dynamically update new
knowledge, which poses a challenge in ever-evolving fields.

To further address these limitations, one promising avenue that
researchers are exploring is the development of Augmented Lan-
guage Models (ALMs). As outlined by Mialon et al. [39], these
models are designed to integrate traditional LMs with external
knowledge sources or processing modules. By synergizing such
components, the goal is to achieve heightened performance in tasks
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that necessitate specialized knowledge or dynamic, real-time in-
formation. Examples of such augmentations include integration
with Knowledge Graphs (KGs) [50, 71, 81, 87], using real-time data
from search engine results [42, 78, 79], and incorporating symbolic
reasoning through modules or code interpreters [20, 25], etc.

Among these augmentations, KG holds a unique position, widely
serving as valuable knowledge repositories in numerous domains,
from business insights [17], common sense reasoning [59, 66, 76]
to medical diagnoses [5, 56, 67]. Particularly, since KG itself is a
manually constructed structurally concise knowledge base con-
taining high-density knowledge, the use of KG augmentation can
introduce credible knowledge content more efficiently than the
traditional way of using corpus to train LMs. Besides, in the event
of time-sensitive changes in knowledge, KG can be more simply
updated with new knowledge or cleared of outdated knowledge
without the need to retrain or finetune, providing greater flexibility.
Such features make KG particularly suited for enhancing LMs.

However, constructing and organizing large-scale KGs is no triv-
ial task. Ensuring accuracy and breadth requires extensive domain
expertise, complemented by sustained human effort. For example,
ConceptNet, a widely-recognized common sense knowledge graph,
is built on more than 8 million nodes and 21 million edges [74].
Such endeavours, while laudable, demand considerable resources.
Furthermore, the value and effort behind these KGs expose them to
unique threats. One possible threat is that an attacker may process
malicious attempts to query such augmented models. With the ob-
tained output, the attacker can adaptively reconstruct a substitute
of KG behind the model by identifying the knowledge in the input
content through the output vector. Such activities threaten the IP
underpinning these KGs and underscore the need for robust secu-
rity measures in the ALM ecosystem. The obtained KG contains
the knowledge needed by the attacker, which enables the attacker
to bypass the overheads associated with constructing the KG.

A similar threat looming over the deployment of neural network
models pertains to knowledge distillation techniques [26, 46, 48].
Knowledge distillation is the process wherein a normally simpler,
smaller student model learns from a more complex teacher model
by minimizing the prediction error between them. Such a distilla-
tion approach bypasses most of the training overheads compared
to training the model directly from scratch using raw datasets. Es-
sentially, the distilled model could replicate the performance of the
original model, thereby undermining its unique value proposition.

Specially, specialized knowledge distillation methods have been
developed for LMs [27, 57]. These techniques are tailored to con-
dense larger LMs into smaller, more manageable ones. Nevertheless,
these methods are not suited for extracting knowledge from KGs,
given multiple differences between LMs and KGs. On the one hand,
neural network models are composed of parameters with continu-
ity, so that gradient optimisation can be performed by minimising
the error, whereas KGs, which are databases with logical structures
consisting of nodes and edges, do not lend them to such an ap-
proach; on the other hand, when building KGs, the specific types
of entity nodes and relation edges are naturally in need, such that
information cannot be determined by the numerical values of the
output vectors obtained from LMs directly. When it comes to the
security and safety issues of KGs, existing research has primarily

focused on topics such as data poisoning [3, 83, 84] and adversar-
ial attacks [4, 89]. However, the specific domain of KG distillation
attacks, wherein the knowledge within KGs could be distilled and
potentially misused, remains largely unexplored.

In this paper, we propose KGDist, the first prompt-based KG
distillation attack designed for KGs in KG+LM augmented models.
The goal of our approach is to extract domain knowledge from the
original KGs by an acceptable number of queries, through black-
box access only, to obtain alternative distilled KGs. Based on the
paradigm of traditional model distillation, we expect the distilled
KGs and the original KGs to have similar accuracy and physical
properties. The approach consists of three steps: First, in the En-
tity Selection step, we initialize a list of core entities to prioritize
their queries and update it in the subsequent rounds based on the
relevance of the entities. This helps in focusing on essential in-
formation related to the target KGs and avoids introducing the
unnecessary entities. Then, in the Prompt-based Distillation step,
we design a multi-granularity task prompt construction to query
the model and apply a confidence-based threshold filtering against
the model output. It allows us to rebuild the distilled KG and select
entities for future queries effectively. Eventually, in the Distilled
Graph Pruning step, we design an cycle pruning algorithm based
on relation types. It helps prevent the accumulation of excessive
relation cycles that could hinder KG utilization.

In terms of the performance of the distilled KG, vitally we eval-
uate on multiple KG+LM models and downstream tasks, showing
that distilled KG obtained maintains performance with no more
than 2.4% variation to the original ones, with also certain similar-
ities in graph properties. Moreover, we use the same settings to
distill on both KG+LM and base LM itself, and compare the resulting
distilled KGs, demonstrating that merely less than 1% of the knowl-
edge in the distilled KGs we obtain is from the LM. Results show
that our approach can effectively strip and extract KG knowledge
from the original KG+LM model. Besides, the proposed mecha-
nisms significantly reduce required query numbers (only 6%-11%
queries compared to the brute force method) and the storage space
of the KGs (less than 3.3% storage compared to the original ones),
highlighting the effectiveness and efficiency of our approach.

We present the following contributions:
• We propose a novel distillation attack on KGs in KG+LMs, which,
to the best of our knowledge, is the first approach to effectively
extract knowledge in graph structures from such models.

• We introduce a new prompt engineering and query paradigm
that ensures the distilled KGs effectively and efficiently capture
essential information, while the pruning mechanism we apply
trims redundant edges and cycles.

• Evaluations demonstrate our attack’s efficacy and resilience against
multiple KG+LM strategies, maintaining comparable task perfor-
mance and properties to the original KGs.
Overall, this work offers valuable insights for future research on

the security and efficiency of KG techniques.

2 Related Work

KG augmented LM. A Knowledge Graph (KG) is a type of knowl-
edge base that utilizes a graph-based data structure to combine
various kinds of data. This structure facilitates the modeling of
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intricate relations between entities, such as people, places, and con-
cepts, via nodes and edges [44]. Given its nature, KG is well-suited
for encapsulating the complexity of human knowledge. Neverthe-
less, the vastness and intricacy of most KGs bring forth challenges.
They typically feature numerous entity nodes and relation edges,
making their manual curation and management not only resource-
intensive but also reliant on significant human intervention, e.g.,
ConceptNet has more than 21 million nodes, over 8 million relation
edges and more than 15,000 contributors [59]; WikiData has over
107 million nodes and 16.7 billion relation edges [66], completed
with 1.98 billion edits made by over 23,400 active contributors [73].

In recent times, advancements in Language Models (LMs) have
paved the way for integrating LMs with KGs through diverse meth-
ods. When it comes to task-specific augmentation, there are several
stand-out techniques. For instance, in the realm of multiple-choice
tasks, QA-GNN by Yasunaga et al. [81] assesses the importance
of each node in the KG and synergizes LM representations with
KG employing Graph Neural Network (GNN) message passing. Fol-
lowing this, GreaseLM by [87] expertly combines token and node
representations to achieve a more detailed, cross-modal reflection.
Additionally, DRAGON, as introduced by [80], leverages a cross-
modal encoder to form a deeply integrated foundation model from
both textual and KG data. For form-based Q&A task, the work by
Knoblach et al. [30] stands out, where KG is employed to under-
stand varied form structures, effectively translating user queries
into answers within the graph structure.

In addition to task-specific models, some strategies strive for
more general applicability by integrating knowledge from KG dur-
ing the LM training phase. A notable example is THU-ERNIE by
Zhang et al. [88], which integrates both corpus-based word vec-
tors and KG entity representations. This model also introduces an
additional KG-aligned task during its pre-training phase. Know-
BERT [50] is another significant model that fuses pre-trained mod-
els, KG-based entities, and native word representations to offer a
comprehensive pre-training experience. In a similar vein, Wang
et al. [71] encode textual entity descriptions with an LM, optimizing
the system for both KG and LM tasks. In conclusion, while a myriad
of KG+LM combination methods exists, the field has not settled
on a standard approach, and remains in a state of rapid evolution.
Because of this, the extraction of KG information for such models
is also difficult to be carried out in conjunction with specific mech-
anism details. To design attack methods with generalization, we
need to start our scheme design from higher level concepts, such as
directly from the relations between input and output information.
Knowledge distillation. Knowledge distillation, originally con-
ceptualized by Hinton et al. [26], serves as a technique for training
a student model to mimic the behavior of a normally more complex
teacher model. The general methodology involves comparing the
output vectors produced by both models for the same set of input
data, and then minimizing the difference between these vectors
during training. The goal is to imitate the teacher model’s decision
boundaries as closely as possible.

Efficiency in generating suitable query datasets for the teacher
model can be a significant factor in the distillation process. Paper-
not et al. [48] have suggested to leverage the Jacobian matrix to
create an augmented query dataset based on initial samples, making
the distillation more effective. Further, Orekondy et al. [46] have

explored the use of reinforcement learning algorithms to create
specialized datasets that are interpretable and adaptive, further en-
hancing the efficiency and performance of the distillation process.
In a Single-Teacher Multi-Student scenario, You et al. [82] intro-
duces gated support vector machines (gSVMs), which help guide
multiple student models. The gSVMs can adapt to training examples
of different levels of difficulty, enabling the production of an array
of specialized binary classifiers apt for various task domains.

Be that as it may, for models of huge size, it is often difficult to get
good results or require huge overheads to distill the whole model
directly. Therefore, there are also works on distilling a fraction of
the original model capabilities using specific domain knowledge.
As proposed by Tang et al. in [62], a portion of the task-related
knowledge of a larger model (e.g., BERT, ELMo, etc.) is migrated
to a simple LSTM model using a task-related distillation dataset.
However, it is worth noting that while knowledge distillation offers
numerous advantages, it is not devoid of concerns. The process
could unintentionally compromise the intellectual property of the
original model. Moreover, attackers might exploit distilled models
for advanced attacks, as discussed by Papernot et al. [48] and Shu-
mailov et al. [58]. A less explored realm in knowledge distillation
is its application to KG. Unlike typical models with continuous pa-
rameters, KG consists of discrete entities and relationships. These
characteristics make conventional model distillation techniques
ill-suited for KG. Additionally, the potential security vulnerabilities
associated with KG remain a topic yet to be thoroughly investigated.
As well, considering the large storage space of KG databases and
the requirements for adaption when used to enhance the LM (e.g.,
fine-tuning [50, 88] and adapter training [80, 81, 87]), a smaller
distilled version of the original large KG, similar to distilled models,
would also be of better utility and efficiency.
KG pruning. Knowledge graph pruning is a crucial process aimed
at streamlining large-scale KGs. Its primary goal is to eliminate
redundant or less informative elements, resulting in a more con-
cise, efficient, and accurate representation. KG pruning techniques
vary, each offering unique approaches to enhancing efficiency and
accuracy. For instance, in a study by Mondal and Mukherjee [41], a
straightforward multi-source sequential BFS (Breadth-First Search)
algorithm is employed. This approach generates a subgraph or for-
est from a Disease-Symptom graph database, effectively speeding
up queries. Similarly, Faralli et al. [18] devises a method that sim-
plifies complex graphs layer by layer, starting from the bottom.
Unnecessary nodes and edges are systematically removed while
ensuring connectivity, transforming noisy graphs into coherent
structures. An innovative approach, known as KGPruning, is pro-
posed by Wu et al. [75]. This method utilizes a graph hierarchy
inference technique based on the Agony model. It excels in elimi-
nating noise from the KG while preserving its underlying seman-
tic structure. Furthermore, it establishes a tree-like classification
system that harmoniously combines meaning and structure. This
dual-pronged approach successfully eliminates irrelevant informa-
tion and addresses the challenges posed by multiple inheritance
problems. However, the most essential difference with our work is
that KG pruning can only be applied to already acquired white-box
KG, aiming to optimizing the original KG. Our method is more
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importantly applicable to black-box scenarios that can only be ac-
cessed via API to steal KG knowledge hidden behind the KG+LM
model, with the reduction of its size as a by-product.
Represent knowledge from LM with KG. KG serves as a type
of highly structured data representations that intuitively model
relations between entities, and LM gains a broad understanding of
semantic relationships and factual knowledge through their train-
ing on extensive text corpora. Several studies utilize such properties
by using KG structures to characterise the intrinsic knowledge of
LMs. For instance, a study by Swamy et al. [61] investigates how
LMs acquire knowledge by monitoring changes in KG structures
during tasks probing specific relations. This approach provides
insights into how LMs perceive various types of relational data.
Alivanistos et al. [1] introduces ProP, a technique for completing
relations in KG edges using GPT-3. They achieve this by crafting
prompts tailored to facilitate the extraction of LM knowledge. Ad-
ditionally, the Language Model Analysis (LAMA) framework, as
proposed by Petroni et al. [51], serves as a standardized benchmark
for evaluating the knowledge competencies of LMs. LAMA employs
questions from multiple KG sources to assess how well an LM can
answer queries requiring factual or relational understanding, albeit
limited to simple single-entity token completions.

However, these works focus on small-scale KG generationmerely
for plain LMs without any KG. In contrast, our approach is designed
to be able to extract and separate the knowledge from KG and LM
in augmented models. Moreover, these studies view the extracted
KGs purely as tools for assessment, and do not consider those
as the knowledge that can be extracted by the attacker. With a
few straightforward queries, they can only get small KG segments
for validation, which are not of further use. Meanwhile, our work
treats the KG as an asset containing practical knowledge. We take a
more systematic approach to extract the original KG knowledge as a
whole, so that the generated KG itself can be utilized for knowledge-
related tasks as the original KG, with a similar performance.
Prompt-based knowledge theft from LLMs. As more prompt
engineering techniques are applied to popular LLMs, it is natural
that attacks that use specially constructed prompts to access the
model and steal private knowledge from it to be proposed. For
instance, Carlini et al. [7] introduce a new attack on black-box
language models to recover the complete embedding projection
layer of a transformer model. The attack works top-down to extract
the model’s last layer. By exploiting the low-rank nature of the
final projection layer, which maps from the hidden dimension to a
higher-dimensional logit vector, they can extract the embedding
dimension or final weight matrix using targeted API queries. Li et al.
[35] explore imitation attacks on LLMs to extract their specialized
code abilities. They investigate the effectiveness of these extrac-
tion attacks with multiple query schemes: zero-shot, in-context,
and Chain-of-Thought and design response checks to enhance the
imitation training process. However, these studies only steal the at-
tribute parameters or specific capabilities of the model itself, which
is still similar to traditional model distillation. Whereas for attacks
on the augmented language models, we target the knowledge base
mounted behind them rather than the model itself, hoping to get
a replica of the knowledge base. Traditional methods cannot be
applied to this scenario.

3 Overview

3.1 A Motivation Example

On the one hand, some kinds of KGs contain valuable private in-
formation themselves, but can be utilized indirectly through LM,
such as Bing and Google’s AI chatbots use KG containing user
preferences and records for personalized recommendations, yet
such KGs is private data of the service providers [55, 64]. On the
other hand, due to the requirement for structure and accuracy, KGs
of all kinds are generally challenging to build and manage, often
requiring massive human or monetary costs. Generalized KGs tend
to be of tremendous scale, e.g., ConceptNet has more than 21 mil-
lion nodes and over 8 million relation edges [59], involved over
15,000 contributors[59] for its maintainence; WikiData has over
107 million nodes and 16.7 billion relation edges [66], and its initial
development was funded by a €1.3 million donation, half of which
came from the Allen Institute for Artificial Intelligence[49]. While
on another side, specialized KGs often require guidance from do-
main experts with relevant professionalism, which is also costly in
expense. According to [2], the long-term cost of a true enterprise
KG is around $10-20 million.

All of these examples demonstrate that constructed KGs are vital
and valuable, calling for protection. Meanwhile, artificially con-
structed KGs tend to have larger number of complex relation types
due to the fact that it is mostly based on rules considering concep-
tual coverage. When such complex KGs are utilized to accomplish
specific downstream tasks, it is not necessary that the entirety of
the entities or relations are required to play a role. Studies such as
[33, 81, 87] etc., all opt to compress the original complex relation
types when utilizing KGs. This is applied based on redundancy in
both entities and relations. For entities, it is obvious that a particular
task often requires only relevant entity information; for relations,
the relation types are often based on a semantic rule rather than
task-oriented when they are initially determined, which makes
them unnecessary for specific tasks.

Therefore, we may consider a motivation example where Alice
distributes a language model API with a private knowledge graph
𝐾𝐺𝐴𝑙𝑖𝑐𝑒 as an augmentation component behind. During API access,
there is no direct perception of the KG content itself. Now consider
an adversary Eve who has access to the API. Eve’s expectation is
to accomplish a specific task, and he/she knows only the required
relation types and part of entities for this task domain. Using the
output of the API, he/she can automatically extract a knowledge
subgraph on the needed task domain from 𝐾𝐺𝐴𝑙𝑖𝑐𝑒 to obtain a re-
placement graph𝐾𝐺𝐸𝑣𝑒 , thus having a consistent performance with
𝐾𝐺𝐴𝑙𝑖𝑐𝑒 in the task domain when augmenting LMs. This bypasses
the cost paid by Alice in constructing the KG, thus infringing on
the property rights of 𝐾𝐺𝐴𝑙𝑖𝑐𝑒 . Moreover, as 𝐾𝐺𝐸𝑣𝑒 only focuses
on the task-related part and is naturally slim in size, for Eve, it has
better utilization efficiency and space efficiency than 𝐾𝐺𝐴𝑙𝑖𝑐𝑒 .

3.2 Threat Model

Suppose the new attackers, armed with only black-box API access
to a victim model that is equipped with the valuable knowledge
graph, can query the model through prompts, extracting knowledge
from it while remaining hidden in the shadows. Like classic model
distillation and attacks for LMs [9, 15, 70], with a small amount
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Figure 1: Workflow of KGDist, where 𝑃 means confidence scores from LMs.

of domain knowledge on the part of the attacker, or by collecting
corpus from related domains for keyword extraction, the attacker is
able to access entities (normally 1%-2%) in the original KG that are
most relevant to the desired task, with specific wordings that may
vary with the original KG entities and no structural information.
With such knowledge in hand, it is available to construct input
prompts tailored to specific task relation types, thereby querying
the model and obtaining the output confidence values (i.e., knowl-
edge). Then the attack can collect knowledge leveraged to construct
an alternative graph iteratively. This substitute contains private
information from the victim and can be integrated into their local
models and achieve performance akin to original KG+LM.

3.3 Challenges

Despite the similarities between our approach and traditional model
distillation in terms of ideas, reconstructing the knowledge graph
itself has unique challenges, mainly due to the structural proper-
ties of the knowledge graph itself. First, as can be seen from the
actual knowledge graph example above, the spatial volume of a
knowledge graph applied to an LLM is usually big. Reconstructing
the knowledge graph requires rebuilding the relations between
entities, making it difficult in terms of time. Second, unlike contin-
uous parameters of a model in the traditional distillation attack,
the knowledge graph is diverse in terms of logical and semantics
structure, which makes it challenging to automatically optimize by
methods utilized by the attacker and those in the original knowl-
edge graph cannot be fully aligned. Thus, it is also challenging to
use semantically different relation types tomaximize the knowledge
migration from original knowledge graph to the distilled one.

3.4 Approach Overview

Figure 1 presents an overview of KGDist, comprising three main
phases: Entity Selection, Prompt-Based Distillation, and Distilled
Graph Pruning.

In Entity Selection, we initialize an entity set that serves as the
starting point for the distillation attack, which is then dynamically
updated in iterative rounds based on a confidence score designed
to evaluate each entity pair in the prompts queried.

In Prompt-Based Distillation, we employ a multi-granularity
method for construction of different model input prompts to balance

between computational efficiency and effectiveness. According to
the model output, we identify and select entities that exhibit high
levels of correlation with the query and reconstruct the relation
edges for subsequent prompt crafting.

In Distilled Graph Pruning, with the draft KG obtained, we per-
form optimization to eliminate redundant or noisy information
within, thus improving the efficiency of utilization and making
them structurally closer to manually constructed KGs. Given that
cycles within the graph can introduce complexity and potential
errors, we focus on the types of relations that produce cycles and
apply a relation type-based pruning algorithm.

4 Methodology

4.1 Entity Selection

As we can only access the model through API query, it is vital
to select the entities for each round (which are defined as "focal
entities") reasonably. Inappropriate selection of entities may lead to
redundancies in the number of queries, thus drastically increasing
query costs. This involves two primary aspects: determining the
starting point of the distillation by selecting a suitable initial set
of query entities, and dynamically updating the query entities for
subsequent rounds based on the results of each iteration.

For the initial phase, according to [22, 32, 68], traversing dense
subgraph parts first during graph traversal can indeed improve
efficiency. Combined with the distributional characteristics of the
knowledge graph, we use a localisation-first traversal method based
on knowledge density to determine the starting point for distilla-
tion thereby improving efficiency. Intuitively, the most important
part of the concepts in a given knowledge domain tends to be the
most associated with other concepts, which means that the relation
subgraphs centred on this part of the nodes in the original KG are
more densely structured in terms of edges, as such an idea has
already been widely accepted in work such as [6, 23, 47]. Further-
more, for attackers, even in a black case scenario where the original
KG is completely inaccessible, they can simply access a small set of
entities in the desired domain by collecting related domain corpus
(e.g., from the Internet or a relevant task corpus) for keyword ex-
traction. Since the LM itself has the ability to understand semantics,
this part of the entities does not need to be strictly aligned with
the entity names of the original KG (e.g., case, singular or plural,
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etc.). They can then determine the order of the initial entity set
through the same priori knowledge source, e.g., by quantifying the
word frequencies. This improves the efficiency of graph distillation
on the one hand, and on the other hand enables the attacker to
retain the parts of knowledge that are most relevant to the domain
concepts by early stopping, for example, when the attacker merely
need a small scale distilled KG.

In subsequent rounds of iteration, for the purpose of efficiently
probing all relevant entities and edges to reconstruct the distilled
KG, we utilize the selected entities from prior rounds as the basis for
generating new query prompts (See Section 4.2). Leveraging these
selected entities allows for a more focused and precise interrogation
of the model, thus optimizing the query process.

Since the essence of KG-based LM augmentation is to utilize the
existing knowledge in KG to complement the LM trained with the
corpus, it is natural that for the input prompt, the output content
of the KG+LM combination will have a higher confidence level
if KG-related entity and relation information exists. For the out-
put confidence values, we can access them through the model’s
API. In particular, many language models give developers/users
information such as the probability or expected accuracy of the
relevant prediction results ([11, 28, 29]), which we can utilize as
our confidence values. Intuitively, it seems that we can directly re-
construct the KG edges through the model’s top predictions of the
inputs, but in reality, doing so directly may introduce noises. During
training, LM, as a probabilistic model, learns not only knowledge
information, but also grammar rules (e.g., insubstantial vocabulary
such as articles, prepositions, etc.), which does not play a big role
in the reconstruction of KG. Such noises may dilute the extracted
knowledge and cause a surge in subsequent queries, thus affecting
the efficiency of our method. On the other hand, similar to the
hidden vocabulary phenomenon [13] of LMs, some combinations
of words, although not immediately conforming to semantic logic,
could still reflect the underlying knowledge encapsulated and rein-
terpreted from the KGs. Setting a hard threshold to separate out
merely logical prompt entries would lead to a considerable loss in
the KG knowledge. Therefore, for entity selection here, we use a
soft threshold mechanism. We retain elements that meet the thresh-
old condition, along with a few that don’t, to ensure the threshold
elements comprise a specific percentage of the total. For example,
in the dataset {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} with a threshold setting of
under 0.4, hard threshold filtering retains only {0.1, 0.2, 0.3, 0.4}.
Soft threshold filtering with an 80% compromising rate retains
{0.1, 0.2, 0.3, 0.4, 0.5} to ensure 80% of the elements are below 0.4.
We tune the threshold to ensure most but not all of the prompts1
exceeding it are coherent and semantically logical, keeping part of
the knowledge from such results.

4.2 Prompt-Based Distillation

With the filtered entities as the focal points for each round, we need
to construct prompts for querying the model. As demonstrated in
several recent related studies [37, 60, 85, 91], model access through
sensible prompt engineering can give rise to effectiveness and effi-
ciency in scenarios involving knowledge extraction. Therefore, the

1To balance the number of queries and knowledge coverage, we use small batch
sampling for testing and choose 90% here as the threshold.

model query phase in our distillation attack scheme places special
emphasis on the careful design of the query prompt, satisfying our
need to focus on the entities and relations originating from KG
more accurately and efficiently.
Query Strategy. The most straightforward approach to formulate
a query strategy might entail the amalgamation of all entities and
relations for a comprehensive traversal. Nevertheless, this approach
invites two predominant challenges. Firstly, the inherent mecha-
nism of LMs signifies that the word order and different modifiers
within the input prompts may disrupt output results, as discussed
in [8, 31, 54], both of these elements may introduce uncontrollable
noise into the distillation knowledge. In order to minimize this un-
certainty, we utilize concise assertions and reverse the positions of
the subject and object entities to perform queries in both directions,
and preserve only outputs with the highest confidence.

Figure 2: Example for Multi-Grained Relation Query.

The second challenge lies in the voluminous number of enti-
ties and the uneven distribution of relations present in KGs. This
makes an exhaustive traversal of every entity-relation pair not
only resource-consuming but also inefficient. To tackle this, we
propose a two-tiered query approach according to the types of rela-
tions, categorizing relations as either coarse-grained or fine-grained.
Coarse-grained relations, such as RelatedTo and About, serve as in-
dicators that simply signal the existence of relations between two
entities, without offering specific detail. Conversely, fine-grained
relations like IsA and UsedFor offer precise, contextual information
about the interplay between entities. As is illustrated in Figure 2,
When Grapes is selected as the focal entity, we first query its coarse-
grained relation with other nodes to be queried, and stop the query
if the output confidence fail to surpass the predetermined threshold
(e.g., Automobile). Subsequently, we delve into fine-grained rela-
tions for deeper analysis and contextual understanding. If such
edges exist, we may further replace the coarse-grained edges with
the fine-grained relations (e.g., Beverage and Salad).
Prompt Construction. With the aforementioned entity selection
and query strategy, we can determine the query pattern and relation
granularity. Accordingly, we proceed with the construction of the
prompts based on the specific scenario. We divide the mainstream
knowledge graph language model applications into two separate
scenarios and focus our attack independently. The first scenario,
referred to as Case 1, deals with users inputting pre-established
entities and relations into the system. The LMs then generate and
return confidence scores that quantify the plausibility of these spec-
ified entity-relation pairs. Notably, this scenario does not introduce
new entities and is typically utilized in applications like multiple-
choice Question and Answer (Q&A) systems. The second scenario,



KGDist: A Prompt-Based Distillation Attack against LMs Augmented with Knowledge Graphs RAID 2024, September 30–October 02, 2024, Padua, Italy

i.e., Case 2, is more dynamic in nature. Here, users provide entities
and relations they have at hand, and the LM proceeds to suggest
correlated new entities. Applications of this case can be observed
in Q&A systems and recommender systems, among others.

For both scenario, firstly, we initialize entity set 𝐸0 and the rela-
tion set 𝑅 from task corpus 𝑐0 for distillation:

𝐸0, 𝑅 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑐0) (1)

Case 1. In the first scenario, our goal is to construct the relation
edges between entities at hand. An example of multiple choice Q&A
task is demonstrated in Equation 2, where we choose entities for
creating prompts in the task-corresponding format:

Prompt: "Which is related to︸        ︷︷        ︸
𝑟𝑖

𝑒𝑖? (a) 𝑒1, (b) 𝑒2, · · · , (N) 𝑒𝑁 ” (2)

where 𝑒𝑖 is a focal entity, 𝑒 𝑗 ( 𝑗 ∈ 1, 2, ..., 𝑁 ) is a query entity, 𝑟𝑖 is a
focal relation (RelatedTo here as an example), and 𝑁 be the amount
of options, determined by the victim LM capacity. With the prompt
construction, we can formulate distillation in such case as below:

𝑒𝑑𝑔𝑒𝑛 = {(𝑒, 𝑒′, 𝑟 ) ∈ 𝐸𝑛 × 𝐸𝑢𝑛𝑐 × 𝑅 | 𝐶 (𝑒, 𝑒′, 𝑟 ) > 𝜏𝑐 }

𝐸𝑛+1 =

{
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 (𝐸𝑢𝑛𝑐 , 𝑞𝑐 ), 𝑒𝑑𝑔𝑒𝑛 = ∅
{𝑒′ | (𝑒, 𝑒′, 𝑟 ) ∈ 𝑒𝑑𝑔𝑒𝑛}, otherwise

(3)

where the prompt (𝑒, 𝑒′, 𝑟 ) constructed from the elements in the
current round of focal entities 𝐸𝑛 , the set of unchecked entities
𝐸𝑢𝑛𝑐 , and the relation set 𝑅 is input into the model𝑀 . The model
subsequently yields the corresponding output confidence𝐶 (𝑒, 𝑒′, 𝑟 )
for the prompt, and prompts that surpass 𝜏𝑐 are kept in the distilled
KG. Concurrently, the tail entity 𝑒′ is appended to the focal entities
𝐸𝑛+1 for the subsequent round. In instances where no prompt has
a confidence level above 𝜏𝑐 , a random selection of 𝑞𝑐 entity from
𝐸𝑢𝑛𝑐 are designated as the focal entities for the next round. The
entities that have been checked are removed from 𝐸𝑢𝑛𝑐 .
Case 2. For the second scenario, we aim to reconstruct the rela-
tion edges and extract unknown entities. Since the mask language
modeling (MLM) task is widely used in natural language model
training [14, 38, 45], and experiments [1, 51] have shown the ability
of LMs to complete the content of the unmask. We employ the
MLM format by designing prompts with the queried entity as the
predicted [MASK] content, as illustrated in Equation 4,

Prompt: "[MASK] ... [MASK]︸                  ︷︷                  ︸
𝑛 tokens

belongs to︸     ︷︷     ︸
𝑟𝑖

𝑒𝑖 ." (4)

where 𝑒𝑖 be a focal entity, and 𝑟𝑖 be a focal relation (BelongsTo here
as an example), 𝑛 ∈ Z be the length of the distilled entity.

Specifically, we utilize multiple connected [MASK] tokens for
predicting longer entity names. We also employ the cumulative
confidence of each [MASK] prediction as the filtering threshold.
For multi-word-length entity prediction, we examine the predicted
words at each [MASK] position, disregard filtered words, and retain
only the highest-confidence combination. The MLM task may in-
troduce irrelevant vocabularies such as conjunctions and pronouns,
the probability of these terms appearing in knowledge graph entity
entries is low, but they may generate a large number of redundant
entities in the distilled knowledge graph, leading to an increased

number of unnecessary queries and reduced query efficiency. To
address this issue, we construct a filtered word list to exclude such
words (Table 3). With the prompt construction, we can formulate
distillation attack in such case as below:

𝑒𝑑𝑔𝑒𝑛 = {(𝑒, 𝑒′, 𝑟 ) | (𝑒, 𝑟 ) ∈ 𝐸𝑛 × 𝑅, 𝐶 (𝑒, 𝑒′, 𝑟 ) > 𝜏𝑐 }
𝐸𝑛+1 = {𝑒′ | (𝑒, 𝑒′, 𝑟 ′) ∈ 𝑒𝑑𝑔𝑒𝑛}

(5)

where the prompt (𝑒, 𝑟 ), constructed from the elements in the cur-
rent round of focal entities 𝐸𝑛 and the relation set 𝑅, is the input for
the model𝑀 . The model outputs the predicted entities 𝑒′ and the
corresponding confidence 𝐶 (𝑒, 𝑒′, 𝑟 ), and the statements (𝑒, 𝑒′, 𝑟 )
with confidence above the threshold 𝜏𝑐 are added to the distilled
KG, and the entities are added to focal entities 𝐸𝑛+1 of the next
round.

After multiple iterations, when no additional new entities are
to be investigated or the iteration number exceeds max epoch, we
ultimately obtain the set of relation triplets containing distilled
entity-relations, which can be formulated as follows:

𝐺𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑑 = (
𝑛⋃
𝑖=0

𝐸𝑖 ,

𝑛⋃
𝑖=0

𝑒𝑑𝑔𝑒𝑖 ) (6)

Moreover, to display a clearer picture of paradigms above, we
showcase practical examples for both scenarios in Section 5.6.

4.3 Distilled Graph Pruning

With the triplets extracted, we can reconstruct our distilled KG.
Next, it is necessary to prune the obtained distilled relation edges.
Due to the noise sourced from the training corpora of LMs, distilled
KGs can indeed exhibit a plethora of edges. As evidenced by classic
works on KG utilization like [18, 63, 65], it has been observed that
small cycles in KGs can diminish the efficiency of the utilization,
consequently calling for rigorous pruning in preprocessing. On
the other hand, distilled KGs contain some redundant edges due
to their automated generation, quite divergent in pattern from the
artificially constructed KG. Meanwhile, it is challenging to design a
pruning technique in our scenario. The most important reason is
that the distilled graph may also be large in terms of volume and
complex in relation types, making it difficult to be pruned in terms
of time cost. Also, since our distillation relation types vary a lot in
different situations, traditional rule-based pruning approaches may
fail to cope with knowledge graphs with different relation types.
Therefore, with the relation types predefined, we design a simple
yet efficient type-based approach for distilled KG pruning.

Figure 3: Example for KG Pruning.

We apply a BFS-based cycle detection on distilled KG and identify
the following two types of relations that would form most of small
cycles: One category includes nested relation types (e.g., IsA and



RAID 2024, September 30–October 02, 2024, Padua, Italy Hualong Ma, Peizhuo Lv, Kai Chen, and Jiachen Zhou

PartOf ). Starting from a focus entity, such relation edges can form
chains with long distances, while edges between initial and distal
nodes, although semantically correct, reflect unnecessary knowl-
edge and form redundant cycles. As shown in Figure 3, focusing on
Boston, although all the relation edges may be valid, not all of them
are needed. Meanwhile, classical KG+LM methods [36, 81, 87, 90]
tend to utilize knowledge paths in KGs with limited hops.

Taking these factors into account, we introduce a pruning ap-
proach that employs a hyperparameter, 𝐻𝑂𝑃𝑚𝑎𝑥 , to limit the edge
number retained for any nestable relations with the same starting
point. For instance, in Figure 3, when we set 𝐻𝑂𝑃𝑚𝑎𝑥 = 2, only
edges connecting Boston to USA and North America would be re-
tained, thus reducing redundancy. The second category pertains
to symmetric relation types (e.g., Equals and NextTo). Although
edges in KGs are defined with the concepts of head and tail, the
actual distinction between these two is often not considered in KG
augmentation approaches. We find that interchanging the head
and tail entities has a negligible impact on the semantic of such
symmetric relations. To optimize for this, we propose a pruning
strategy that retains only the edge with the higher confidence score
for each symmetric relation.

As depicted in Figure 3, overall, our pruning strategy has the
following benefits: first, we eliminate redundant edges from the
knowledge graph, making it more time-efficient for subsequent
loading and utilization sessions; second, since the attacker’s goal
is to obtain a functionally equivalent subgraph to be used only on
the desired domain, pruning further reduces the spatial costs of
the subgraphs; and finally, pruning also aligns the distilled more
closely with the original KG, ensuring that the pruned KGsmaintain
performance with minimal degradation.

It is worth noting that although we demonstrate our approach
of querying and pruning using specific scenarios and relation types
for instance, since the criteria we use (e.g., whether a query returns
a new entity, whether a relation exists or can be nested) are based
on high-level logic, our approach applies to all scenarios or specific
relation choices with transferability. Moreover, we can distinguish
these scenarios into two most dominate scenarios according to
whether the victim model returns new entities during the attack:
scenarios in which no new entities are returned as in [30, 33, 80, 81]
; and cases in which new entities are returned including [50, 71, 88].
Deisgned at a high level, this category criterion can mostly cover
mainstream model application scenarios.

5 Experiment

5.1 Experimental Setup

Our experimental setup is shown in Table 1, as described below.
LM and KG architectures. We employ various representative
KG+LM models, categorized into two cases:
• Case 1:

– QA-GNN [81] and DRAGON [33] are both based upon the
RoBERTalarge [38], augmented with ConceptNet [59].

– GreaseLM [87] relies on AristoRoBERTa [12], finetuned from
RoBERTalarge and augmented with ConceptNet.

• Case 2:

– KnowBERT [50] utilizes BERTbase [14], and is augmented with
a self-constructedWikipedia KG.

– KEPLER [71] employs RoBERTabase and is augmented with a
self-constructedWikiData5M KG.

Evaluation Tasks.We use the tasks where KGs contribute more to
the performance in the original model evaluation. For all tasks that
are not explicitly stated, the assessment metric is the task accuracy.
For Case 1, we select the following task:
• OpenbookQA (OBQA) [40]. A 4-way multiple-choice Q&A re-
source supplemented by an open book of scientific facts.

For KnowBERT in Case 2, we select the following tasks:
• KG Probing. Following the original work, we generate tuples
from KGs and create two testing instances with the subject or
the object masked. The evaluated metric is the Mean Reciprocal
Rank (MRR) of the masked word predictions, averaging the
reciprocals of ranks for first correct answers.

• Words in Context (WiC) [52] provides two sentences with a
same word, and requires the LMs to discern whether both share
the same meaning in the contexts, evaluating the accuracy of
contextual word representations.

• OpenEntity [10] assesses the performance of entity typing by
classifying entity mentioned into pre-established types.

For KEPLER in Case 2, we select the following tasks:
• FewRel [24]. A dataset for relation classification. Gao et al. [21]
proposed FewRel 2.0, adding data from the medical field. During
each round, N relations, K supporting instances per relation,
and several queries are randomly selected and the models assign
them to one of the relations, relying solely on these instances. 2

• OpenEntity. Same as in the KnowBERT evaluation.
• LAMA [50] & LAMA-UHN [53]. A popular knowledge probing
method that features cloze-style questions. LAMA-UHN is the
enhanced version with dubious templates elimated.

Entities and Relations. For initial entities, We control for the
1-2% of entities in the original KG that are known by the attacker
to be most relevant to the task domain. Specifically, as in [34, 43],
we extract the public entities of the task domain corpus and the
original KG, sort them according to their number of hits in the task
corpus, and select the most relevant ones to initialize. For relations,
due to the complexity of the relation types in the original KGs,
according to [81, 87], we select commonly used relations based on
coverage on logical relations, as shown in Table 2.

Besides, considering that there may be potential effects of dif-
ferent relation types on our attack, we also test with different
types, as discussed in Section 6. For filtered entities, from the pre-
experiments, we identify the most high frequency noise words as
filtering entities, as shown in Table 3.
Hyperparameters. For the different hyperparameters, we use the
following guidelines for the determination:
• 𝜏 & WLmax. As 𝜏 discussed in Section 4.2, since MLM may also
output illogical results for more [MASK] tokens, we set them to
ensure 90% prompts above it are logical. We discuss the effect
of different 𝜏 , shown in Section 6.

• HOPmax. We set it preliminary experiments on sample batches,
experiments of the effect are also provided in Section 6.

2We set N = 10, K = 5 to maximize the performance difference between the models
with and without KGs.
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Table 1: Experimental Setup

Case Approach Base Model Knowledge Base Task Init Ent (Size %)
4

Case 1
QA-GNN RoBERTalarge ConceptNet1 OpenBookQA 5,289 (0.66%)DRAGON
GreaseLM AristoRoBERTa

Case 2

KnowBERT BERTbase Wikipedia
KG Probing

8,102 (1.72%)Word in Context
OpenEntity

KEPLER RoBERTabase2 WikiData5M

FewRel

30,250 (0.66%)OpenEntity
LAMA3

LAMA-UHN3

1 Following original settings, only the entity subset in English of ConceptNet is utilized.
2 To control the variables, we used the same small-scale corpus for RoBERTa fine-tuning in original work.
3 For LAMA we evaluate on T-REx and SQuAD, and for LAMA-UHN we choose Google-RE and T-REx.
4 Denotes the size of initial entity set and its proportion in the original entity set.

Table 2: Distillation Relation Set

(a) Case 1

Type Relation Nestable

Abstract RelatedTo Yes
Causal Causes Yes

Belonging BelongsTo Yes
Category IsA Yes
Usage UsedFor No
Impact Affects No

(b) Case 2

Type Relation Nestable

Abstract RelatedTo Yes
Category IsA Yes
Influence Influences No
Belonging BelongsTo Yes
Causal Causes Yes
Usage UsedFor No

Location LocatedIn No
Similarity SimilarTo No

Table 3: Filtered Word Types

Type Instances

Adverb almost, mostly, only
Pronoun you, him, everyone, why
Article a, an, the

Conjunction because, until, but
Symbol :, >, <, ], [UNK]

• qc. It limits the query count per round, and has no effect on the
total query and KG performance. We select it based on our GPU
resources and can change it as well.

Accordingly, the hyperparameters are set as follows, for Case 1:
• For both: 𝐻𝑂𝑃𝑚𝑎𝑥 = 6, 𝑞𝑐 = 10
• QA-GNN: 𝜏𝑐 = 18, GreaseLM: 𝜏𝑐 = 15
For Case 2:
• For both: 𝐻𝑂𝑃𝑚𝑎𝑥 = 3,𝑊𝐿𝑚𝑎𝑥 = 4, 𝑒𝑝𝑜𝑐ℎ = 500
• KnowBERT: 𝜏𝑐 = -3.5 per token, KEPLER: 𝜏𝑐 = 18 per token

5.2 Task Performance

We evaluate our attack against various KG+LMmodels, as shown in
Table 4.We find that the distilled KGs, like the original KGs, perform
comparably well when augmenting the base models3. Specifically,
in Case 1, all distilled KGs achieve task accuracy results that are
nearly identical to the original ones, with a maximum difference
of just 0.60%. In Case 2, KnowBERT’s distilled KG outperforms the
plain LM in two tasks with strong knowledge correlations, with
only minor differences of 0.03% and 0.20%. The WiC task’s perfor-
mance decreases more, likely due to lower knowledge correlation
of the task. Nevertheless, this performance decrease remains below

3We also evaluate LAMA and LAMA-UHN tasks despite their low original accuracy,
as they are widely used for evaluating LM knowledge performance [19, 24, 69, 86].

2.40%, maintaining an advantage over the baseline model. The per-
formance reduction in KEPLER can be attributed to its reliance on
the extensive WikiData 500M and the relatively small initial entity
set. These results emphasize that our method successfully extract
the task-related knowledge from the original KGs.

5.3 Efficiency

In the preceding sections, we have discussed various strategies
aimed at reducing queries to improve the overall computational ef-
ficiency of our method. Alongside this, by focusing on task-relevant
subgraphs, our approach not only maintains high performance but
also results in more compact distilled KGswhen juxtaposed with the
original, more expansive KGs. Consequently, this section assesses
the temporal and spatial efficiency of our proposed technique.
Temporal Efficiency. We introduce multi-granularity prompt con-
struction and word filtering to enhance efficiency in KG distillation.
A basic approach is to use brute force algorithm to query all com-
binations of entities and relations. For temporal efficiency, we use
query counts rather than times as a measure because it is unfair to
compare times between APIs of models with different time com-
plexities. Since the lengths of the query statements we constructed
do not fluctuate much, it is more objective and accurate to use
query counts for the efficiency measure. Table 5 presents that our
approach substantially improve the temporal efficiency, reduced by
up to 93.17% from query numbers of the brute force method. On
the other hand, since we initialize with the most important enti-
ties, which tends to be in the most densely informative part of the
original KG, the beginning rounds will naturally extract the most
important relations. This allows us to further reduce model queries
by using mechanisms such as early-stopping, while sacrificing only
a small fraction of the task accuracy. As is shown in Table 6, we
revisit GreaseLM and QA-GNN in Case 1 and apply early stopping.

It can be shown that the distilled KG obtained from the first
25% and 50% of the queries already contains a large part of the KG
knowledge, and only loses no more than 3% of the performance
compared to the full queries, which is still higher than the base LM.
It is also noticeable that when the edge number is just less than half
of the distilled KG with full queries, there is still a 2.8% and 0.6%
performance improvement compared to the plain LM, proving that
the knowledge gained from the initial distillation rounds is the most
important, proving the effectiveness of our entity set initialization.
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Table 4: Task accuracies of baseline LMs, original and distilled KGs.

Case Model Task
Augmented Graph

No KG Original Distilled

Case 1
QA-GNN

OpenBookQA
64.8 67.8 67.2

DRAGON 64.8 72.0 71.4
GreaseLM 78.4 83.9 83.1

Case 2

KnowBERT
KG Probing 0.09 0.31 0.28

WiC 65.4 70.9 68.5
OpenEntity 73.6 76.1 75.9

KEPLER

FewRel 64.7 71.0 68.8
OpenEntity 73.8 76.2 75.3

LAMAT-REx/SQuAD 23.2/8.0 24.6/14.3 24.0/12.8
LAMA-UHNGoogle-RE/T-REx 2.4/15.2 3.3/16.5 3.0/16.0

All tasks use the accuracy rate (%) except for the KG Probing task, which uses the MRR for assessment.

Table 5: Query counts of distillation.

Model Brute Force Our Method

QA-GNN 21.6M 1.5M
GreaseLM 21.6M 2.4M
KnowBERT 72.6M 5.3M (12.2M)1
KEPLER 44.1M 2.8M (5.9M)1

1 Results out/in the brackets represent with/without word filtering.

Table 6: Early-stopping based on query counts.

Model Query Limit Edges (Rate %) Acc (%)

GreaseLM

Original 2,487,810 83.9
Non-Limit (2.2M) 26,052 (1.05%) 83.1

50% (1.1M) 19,824 (1.05%) 82.5
25% (0.6M) 10,418 (0.42%) 81.2
Plain LM - 78.4

QA-GNN

Original 2,487,810 67.8
Non-Limit (1.5M) 11,084 (0.44%) 67.2

50% (0.75M) 9,345 (0.38%) 66.4
25% (0.375M) 6,842 (0.28%) 64.8
Plain LM - 64.2

Spatial Efficiency. Table 7 highlights the significant storage re-
ductions comparing the original KGs to their distilled versions.

Table 7: Storage comparison of original and distilled KGs.

KG Source Entities (Rate %) Edges (Rate %)

ConceptNet

Original 799,273 2,487,810
QA-GNN 5,289 (0.66%) 11,084 (0.45%)
DRAGON 5,289 (0.66%) 20,183 (0.81%)
GreaseLM 5,289 (0.66%) 26,052 (1.05%)

Wikipedia Original 470,113 446,300
KnowBERT 15,218 (3.22%) 10,441 (2.34%)

WikiData500M Original 4,594,485 20,614,279
KEPLER 51,654 (1.12%) 58,188 (0.28%)

For entities, the distilled KGs hold at most 3.3% of the original,
and more typically, less than 1%. Similarly, the number of relation
edges in the distilled KGs seldom exceed 2.4% of the original ones,
generally under 1%. This drastic reduction can be attributed to
two factors. First, by prioritizing domain-specific entities and re-
lations, our design manages to dramatically cut down on storage
space, making our distilled KGs far more leaner than their original
versions. Second, as elucidated in Section 6, results have shown
that KG+LM augmentation methods is usually not able to harness
the full potential of the original KG. In essence, our distilled KG
captures the LM’s genuine utilization of the original KG more effec-
tively, which aligns with the core principles of distillation attacks
and also provide insights on such KG+LM methods.

5.4 Comparison with Ground-Truth KGs.

In this subsection, we compare the distilled and the groud-truth
KG. Since our interest is the task domain subgraph, we extract the
entity nodes in the original KG and their neighboring edges within
2 hops as ground-truth subgraphs. Next, we evaluate them from
two perspectives: graph properties and knowledge properties.
Graph Properties. Since distilled KGs are constructed automati-
cally, there may be variability in physical properties from the origi-
nal KGs. We assess the relationship between them, and a detailed
comparison of their graph properties is presented in Table 8.

Table 8: Comparison of graph properties.

(a) Case 1

Metrics
QA-GNN DRAGON GreaseLM

Ori. Dist. Ori. Dist. Ori. Dist.
Avg Degree 3.88 2.25 3.92 3.27 4.17 3.70

Avg Cycle Len 4.76 4.00 5.02 4.01 5.79 4.01
Cycle Num 2,368 145 3,104 2,514 3,957 3,795
Avg Path Len 2.18 2.01 2.09 2.21 2.16 2.20

Density 0.0015 0.0020 0.0013 0.0014 0.0011 0.0008

(b) Case 2

Metrics
KEPLER KnowBERT

Ori. Dist. Ori. Dist.
Avg Degree 4.58 2.10 1.27 2.00

Avg Cycle Len 64.05 5.22 16.85 4.86
Cycle Num 16,735 1,688 1,480 122
Avg Path Len NC1 3.69 NC NC

Density 0.0003 0.0001 0.0006 0.0002
1 NC indicates that the graph is not connected so this metric can’t be measured.

In Case 1, we notice that the distilled KGs closely resemble the
original subgraphs in graph properties. This similarity is evident in
metrics such as node average degree, graph density, and average
path length, indicating that relevant knowledge of each node has
been effectively extracted and that knowledge paths between nodes
remain intact, indicating that our distilled KG is similar to the orig-
inal ones in terms of the knowledge distribution. Our method for
pruning also demonstrates its validity, as the distilled KG exhibits
less and shorter cycles compared to the original subgraph.

Notably, when using the same KG in Case 1, GreaseLM achieves
the highest task accuracy, suggesting that its augmentation effi-
ciently harnesses KG potential, as reflected in the high similarity
in graph properties between the distilled KG and the original. Es-
sentially, this reaffirms that our method can reflect the utilization
efficiency of KGs by LMs. In Case 2, the outcomes still fall within
the typical metric boundaries for natural KGs. However, we observe
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reduced connectivity between the KGs, with both the distilled KGs
and subgraphs displaying disjunctions and lower node degrees.
This divergence may be due to the nature of the MLM tasks, which
introduces randomly distributed knowledge, resulting in looser and
more fragmented KGs compared to Case 1.
Knowledge Properties. In addition, we assessed the similarity
between the distillation KG and the ground-truth KG in terms of
knowledge attributes in three different dimensions. We propose
the following two metrics to evaluate the similarity of knowledge
properties: the Entity Hit Rate (abbreviated as EHR), which is com-
puted to calculate the percentage of nodes in the distillation KG
that appear in the ground-truth KG; and the Relationship Presence
Rate (abbreviated as RPR), which measures whether the edges in
the distill KG, with nodes at their ends, have paths with hops less
than three in the original KG. The result is presented in Table 9.

Table 9: Comparison of knowledge properties.

Metrics QA-GNN DRAGON GreaseLM KEPLER KnowBERT

EHR (%) 100.00 97.46 99.92 82.64 83.76
RPR (%) 25.74 27.98 34.12 12.89 14.71

As can be seen from the Table 9, results of EHR are all above
90% in Case 1, and slightly lower but also above 80% in Case 2. The
reason for this and the experimental results of graph properties is
also similar, due to the fact that the models in Case 1 have fewer
mixed noise compared to the models in Case 2. For RPR, it has a
lower value overall, which is due to a larger change in the structure
of the KG after the LM interpretation. However, relatively speaking,
the trend of RPR also has similarity with other methods, and the
better the performance of the KG enhancement method the higher
the RPR of its distill KG, which proves that our KG distillation
method still reflects the knowledge information of LM utilizing KG.

5.5 Ablation Study

Distilled Graph Pruning. In our evaluation of GreaseLM, we
assess the effectiveness of our pruning strategy. From the spatial
efficiency perspective, as illustrated in Table 10a, after implement-
ing both pruning strategy, the number of relation edges in the KG
reduced by a notable 17.20%. Intriguingly, rather than seeing a de-
cline in performance, the task accuracy rate experienced a 1.42%
boost, mainly due to the fact that pruned edges may in turn intro-
duce noise to the task. And furthermore, since these knowledge
graphs are applied on the model for use, this also greatly reduces
the time cost of model augmentation; moreover, the pruned knowl-
edge graphs are closer to the original subgraphs in terms of the
number of edges. This demonstrates that our pruning approach
can improve query efficiency and reduce noises in the distilled KG,
further enhancing its task performance.
Prompt Construction.We employ KnowBERT to assess the ef-
fectiveness of the proposed query reduction strategy in prompt
construction. Given the prohibitive cost of multiple repetitions,
we commence our evaluation with a random selection of several
entities4 from the original KG. We compare the query count and
the ratio of new entities and query counts (which we define as

4To balance the number of queries and the credibility of our validation, we randomly
select a moderate number of 1,000 entities.

Table 10: Ablation Study

(a) Pruning

Method Edges Accuracy

Ours 26,052 83.10%
- Pruning Step 31,465 81.68%
(b) Prompt Construction

Method Queries NE/Q

Ours 1.00x 1.00x
- Word Filtering 1.74x 0.64x
- Multi-Granularity Prompts 12.68x 0.18x

NE/Q) with and without the query reduction strategy. The evalua-
tion results are shown in Table 10b. Discarding word filtering and
multi-granularity prompt construction mechanisms precipitates
an exponential surge in the number of queries to 1.74 and 12.68
times of the original, respectively. Despite this, NE/Q witnesses
a significant drop to 64% and 18% of the original, illustrating a
disproportion between overhead and benefit. Such observations
unequivocally corroborate the vital role and indisputable necessity
of the introduced mechanism.

Table 11: Examples for prompt query.

(a) Case 1: GreaseLM (𝜏𝑐 = 15)

Eg.1

Prompt:Which is related to glacier?
Statements: A) Trees B) Passed C) Sunset D) Frozen Water
Output: P(A) = -20.3411, P(B) = -12.6022, P(C) = -15.0365, P(D) = 15.5414
Description: Since confidence of D is greater than the threshold,
{glacier, frozen water, RelatedTo} is retained.

Eg.2

Prompt:Which belongs to sea anemones?
Statements: A) Large object B) Invertebrates C) Living organism
D) Fibrous tissue
Output: P(A) = 6.7267, P(B) = 24.0860, P(C) = 20.9996, P(D) = 18.2507
Description: Confidence of B,C,D are greater than the threshold,
{invertebrates, sea anemones, BelongsTo}, {living organism, sea anemones,
BelongsTo} {fibrous tissue, sea anemones, BelongsTo} are retained.

Eg.3

Prompt:Which is related to land mass?
Statements: A) Cows corn B) Prolongs C) Receiving D) Magnetite
Output: P(A) = -9.2758, P(B) = 3.0573, P(C) = -14.3154, P(D) = -4.2480
Description: Since confidence of no statement is greater than the
threshold, no relation edge is retained.

(b) Case 2: KEPLER (𝜏𝑐 = 18 per token)

Eg.1

Prompt: [MASK] is related to misery.
Output: joy (P = 21.6423); pain (P = 21.2853); sin (P = 20.1220)
Description: With confidence greater than the threshold, {joy, misery,
RelatedTo}, {pain, misery, RelatedTo}, {sin, misery, RelatedTo} are retained.

Eg.2

Prompt:West Africa belongs to the [MASK] [MASK] .
Output: african region (P = 36.4353)
Description: With cumulative confidence greater than the
cumulative threshold, {west africa, african region, BelongsTo} is retained.

Eg.3

Prompt: [MASK] [MASK] is a crown jewel.
Output: gold diamond (P = 36.0872)
Description: With cumulative confidence greater than the
cumulative threshold, {gold diamond, crown jewel, IsA} is retained.
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5.6 Practical Examples

Examples of distillation prompts.We select examples from both
cases and analyze the results as follows in Table 11: In both cases,
using entity-based question prompts filtered by output confidence
threshold accurately reconstructs entity relations. In Case 1, dis-
tilled entities and relations align logically due to the fixed entity set
without generation of new entities, the possibility of direct noise
generation by LM is greatly reduced. In Case 2, using single-mask
token prompts maintains strong interconnections among entities,
but with multiple mask tokens, occasional semantic coherence
issues arise due to the inherent instability of the MLM task. Never-
theless, such illogical predicted words still exhibit strong semantic
ties to target entities, underscoring the knowledge retained from
the original KGs. For example, in Eg.3 of Table 11b, although gold
diamond obtained is not a logical phrase, there is a high degree
of correlation with crown jewel in prompt, which also reflects the
relevant knowledge. And also, the threshold ensures that even such
lapses form merely a minor part of the distilled KG.

Table 12: KG+LM models interpret the same KG differently.

(a) QA-GNN

Source Relation Target

Oaks RelatedTo

Bush
Timber
Wooded
Acorns

Forested Area
Wooded Area

Thick
Leaves
Large

(b) GreaseLM

Source Relation Target

Oaks

RelatedTo Often Green
BelongsTo Integral

Affects Lifeforms
Potential Energy

UsedFor Ecosystem
Nourishment

Causes
Evergreen
Meadows

Long Cabins

Differences in interpretation of KGs. Experiments in Section 5
have shown that our distilled KGs reflect the knowledge ability of
the base models quite closely. Accordingly, when distilling knowl-
edge from the same source KG, distilled KGs can still vary based
on the KG+LM approach used. As mentioned in Section 5, on the
OBQA task, GreaseLM shows an outstanding accuracy of 83.8%,
significantly surpassing QA-GNN’s score of 67.2%. Meanwhile, as
shown in Table 12, when distilling knowledge related to the source
entity, Oaks, QA-GNN tends to generalize relations, resulting in a
weaker knowledge connection to the target entities. Conversely,
GreaseLM captures more detailed relations about the entities, which
may serve as a rationale of GreaseLM’s superior capability to lever-
age knowledge from KGs. It is essential to understand that distilled
KGs serve as lens, revealing how the models interpret and utilize
the original KGs with the augmentation method applied.

6 Discussion

Impact of 𝜏 and𝐻𝑂𝑃𝑚𝑎𝑥 . For the hyperparameters 𝜏 and𝐻𝑂𝑃𝑚𝑎𝑥 ,
we conduct repeated experiments on the GreaseLM model to evalu-
ate the effect of different values on the number of queries and the
performance of distilled KG. The results are shown in Table 13.

For 𝜏 , setting it too large will retain only entity nodes with higher
confidence and reduce the number of queries, but accordingly, a
part of entity-relation edges containing valid knowledge will also
be filtered, leading to a decrease in the performance of distilled KG;
too small 𝜏 will retain a part of entity nodes with lower confidence,

which will lead to a great rise in the number of queries, but since
most of the content of this part of the entities are noise content,
the performance rise of distilled KG is not obvious. Therefore, we
choose a more moderate value of 𝜏 as we have discussed.

For 𝐻𝑂𝑃𝑚𝑎𝑥 , we find that proper pruning contributes to the rise
in distilled KG performance, which is due to cutting out some of
the redundant information that may interfere with the task per-
formance. However, beyond some fixed threshold, the change in
the number of clipped edges is no longer significant. This is due
to the fact that semantic logic that is too complex for LM becomes
inherently less easy to generate. Due to the low cost of pruning, it
can be set easily by preliminary experiments on sample batches.

Table 13: Impact of Hyper-parameters.

Param. Value Edges Queries Acc (%)

- Victim 2,487,810 - 83.9

𝜏

𝜏 = 10 28,124 3.7M 83.5
𝜏 = 15 (Ori) 26,052 2.4M 83.2

𝜏 = 20 20,981 2.0M 82.9

𝐻𝑂𝑃𝑚𝑎𝑥

No Pruning 31,465 2.4M 81.7
𝐻𝑂𝑃𝑚𝑎𝑥 = 5 30,126 2.4M 81.8
𝐻𝑂𝑃𝑚𝑎𝑥 = 4 29,012 2.4M 82.8

𝐻𝑂𝑃𝑚𝑎𝑥 = 3 (Ori) 26,052 2.4M 83.1
𝐻𝑂𝑃𝑚𝑎𝑥 = 2 11,584 2.4M 81.3

Distinction between knowledge from LM and KG. Our ap-
proach hinges on the notion that the KG+LM augmentation proves
effective by giving higher confidence to information directly from
KG, compared to LM alone. To demonstrate differentiation between
knowledge sources, we repeat with GreaseLM in Case 1, but with-
out integrating the KG on the base model. The results, as shown
in Table 14, speak volumes. In the absence of KG integration, the

Table 14: Comparison with plain base model.

Approach Source Entities (Rate %) Edges (Rate %)

GreaseLM
Original 799,273 2,487,810
LM + KG 5,289 (0.66%) 26,052 (1.05%)
LM Only 5,289 (0.66%) 201 (0.01%)

distilled KG contains only 201 relation edges, a mere 0.77% com-
pared to when the KG is included. This stark contrast underscores
that the lion’s share of knowledge in the distilled KG is derived
from the original KG, not LM. This solidifies the effectiveness of our
threshold in distinguishing between the two knowledge sources.

Table 15: Variations on distillation relation types.

Original Less Types Changed Words Coarse Only

RelatedTo RelatedTo About RelatedTo
Causes - Generates -

BelongsTo BelongsTo IsOf -
IsA IsA InstanceOf -

UsedFor - IsFor -
Affects Affects Influences -

Impact of attacker’s knowledge. While the attacker aims to
extract domain knowledge, there is some prior knowledge about the
entities and relations to distill. To account for potential impact on
outcomes, we revisit the GreaseLM case and conduct experiments
with different initial entities and relation types settings. For entities,
we test with different size of initial entity sets. For relations, we
introduce vocabulary variations and also consider purely coarse-
grained relations for comparison (see Table 15).
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For entities, the result is showcased in Table 16a. Results show,
even if the attacker only knows 0.33% proportion of the entities
in the original KG that are relevant to the task, the resulting dis-
tillation profile has only a 2% performance degradation compared
to the original KG. For relation types, as is summarized in Table
16b, a broader range of relation types may slightly enhance per-
formance. Interestingly, however, even coarse-grained distillation
manages to capture most of the key KG knowledge, with task per-
formance dropping by no more than 1.04%. Similarly, vocabulary
variations introduce performance fluctuations, but these remain
within a margin of 2.64%. These results can be attributed to two key
facets. Firstly, the graph structure of the KG ensures that the logical
interconnections between entity nodes remain largely impervious
to the nuances of edge types. Secondly, the intrinsic ability of the
LM to interpret semantics ensures that knowledge is extracted accu-
rately, even when the employed vocabulary doesn’t align perfectly.
Overall, there is a limited effect on how much initial knowledge is
acquired on our distillation performance. Only a small amount of
initial knowledge is needed for our attack to work well.

Table 16: Impact of attacker’s knowledge.

(a) Initial Entities

Init Ent Size Edges (Rate %)Acc (%)

Victim 2,487,810 83.90
5.3K (0.67%) 26,052 (0.45%) 83.10
4.0K (0.50%) 22,981 (0.38%) 82.72
2.6K (0.33%) 14,721 (0.28%) 81.94

(b) Relation Types

Source Edges (Rate %)Acc (%)

Victim 2,487,810 83.90
Distilled 26,052 (1.05%) 83.20
Less Types 24,775 (1.00%) 83.12
Coarse Only 21,932 (0.88%) 82.86

Changed Words 18,723 (0.75%) 81.26

Impact of Base Model. As discussed in Section 5.6, even for the
same original knowledge graph, there is variability in the efficiency
of knowledge utilization of different models or enhancement meth-
ods. As a result, the performance of distilled knowledge graphs
acquired by our attack method is also affected. Meanwhile, it is no-
table that the goal of our attack is that the distilled KG augmented
model combination and the original combination are consistent in
performance, when the original model itself performs poorly, it is
natural that the KG we obtain performs poorly, reflecting the origi-
nal performance. On the other hand, for attackers, the goal of their
attack is to obtain the part of augmented knowledge from the aug-
mentation model that is actually effective. If the base model itself
does not make good use of knowledge graph information, attacking
such underperforming models is itself of little significance.
Applicability on LLMs. Recently, LLM knowledge graph enhance-
ment techniques such as GraphRAG [16], MindMap [72], etc. have
emerged, all of which have better utilization efficiency for knowl-
edge graphs. According to the previous discussion, when the perfor-
mance of the base model is strong, the acquired knowledge graph
also has better performance. Meanwhile, our attackmethod requires
only the model’s output API, and the attack performance is propor-
tional to the model’s performance and independent of the model’s
architecture. Although we do not conduct further experiments on
these models due to experimental constraints, our approach may
still have similar results on such models.
Practical Cost. Since many commercial black-box model APIs
now charge users according to the number of tokens they access,
conducting such an attack also requires taking into account realistic
monetary overheads. We evaluate the practical monetary cost for

applying such an attack, since we use short assertion (Table 10),
our query is generally no longer than 15-20 token. For ChatGPT-3.5
model ($0.0010 / 1K tokens), the cost for our most complex model
(KEPLER, 5.8M queries) is only $87-$116, well within the acceptable
range. This proves the practicality of our approach with good cost
control in real scenarios as well.
Limitation. Similar to black-box model distillation, the attacker is
often limited by the API access. On the input side, for instance, in
Case 1, the API might restrict the option numbers for the multiple-
choice model. Consequently, our prompts must be adjusted to work
within these constraints. On the output side, when the API returns
less information for each query, we might need more queries. An-
other major issue is that in some situations, confidence might not
be available. We rely on them for two reasons: they guide the entity
query order, and determine which entities to retain.

However, without them, we can adapt in a couple of ways. First,
if the target model provides multiple options to a query, we can
select entities based on their inherent output ranking to bypass
the need for confidence-based ordering. In real-world applications,
models with hard-label outputs may have underlying threshold
mechanisms. For instance, recommendation systems typically dis-
play only the top results with the highest confidence, which can
be exploited by our attack. If even this information is not available,
we might end up including more low-confidence entities, leading
to more queries. Yet, our primary objective, which is extracting
knowledge from the original KG, remains achievable.

Though our approach is much better than brute-force, it still
requires a significant number of queries. This is because the number
of nodes and relation types in the original knowledge graph itself
is of a very large scale. The query efficiency maybe improved by
concatenating multiple entities to construct a prompt, and then
filtering to see the role weights that different entities occupy in the
prediction results, which can be our further work.
Defense. For those considering potential countermeasures, it’s
worth noting that our attack method can be influenced by certain
API output behaviors. If the model were to shuffle the order of
candidate results, our entity selection priority during distillation
could be disrupted. The hard-label output means discussed in the
previous section can also be used to defend against our attack.
Additionally, reducing the weight of KG information in the output
might impede our attack. However, it’s essential to realize that
while these defenses might reduce the efficiency of our attack, they
cannot fully block the extraction of knowledge from original KGs.
We have carried out KG distillation using only hard-label data on
both GreaseLM and QA-GNN methods to simulate the possible
defense approaches, and the results are shown in Table 17:

Table 17: Impact of Hard-Label Defense.

Approach Source Edges Queries Acc (%)

GreaseLM
Victim 2,487,810 - 83.9
Distilled 26,052 2.4M 83.2

Hard-Label 19,889 5.7M 82.4

QA-GNN
Victim 2,487,810 - 67.8
Distilled 11,084 1.5M 67.2

Hard-Label 9,817 3.9M 66.8

The results show that using hard labels increases our query
counts, but as far as the task performance of the KG is concerned,
the performance of our refined KG remains similar to that of the
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original KG, which proves that our attack is robust to this defense.
Meanwhile, as shown in Table 6, even when efficiency is compro-
mised, valid queries during the same time amount may be greatly
reduced, a significant portion of the knowledge can still be extracted
at the starting rounds. More importantly, such defensive measures
might compromise the model’s accuracy and usefulness.

7 Conclusion

In this paper, we propose KGDist, the first knowledge graph distil-
lation attack against language models augmented with knowledge
graphs. Our approach involves the appropriate selection of entities
for prompt construction and querying, the filtering of relation edges
utilizing a confidence threshold, iterative updates to query entities,
and the application of pruning and merging to the distilled KG.
Experimental results demonstrate that KGDist effectively transfers
domain knowledge from victim KG to distilled KG, maintaining
augmented models’ performance. We conclusively show that our
method adeptly differentiates between the KG knowledge and ex-
traneous noise. Furthermore, the distilled KGs keep similar graph
properties compared with the original ones.
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