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Abstract
Recent years have witnessed a surge in the growth of Advanced
Persistent Threats (APTs), with significant challenges to the security
landscape, affecting industry, governance, and democracy. The ever-
growing number of actors and the complexity of their campaigns
have made it difficult for defenders to track and attribute these
malicious activities effectively. Traditionally, researchers relied
on threat intelligence to track APTs. However, this often led to
fragmented information, delays in connecting campaigns with
specific threat groups, and misattribution.

In response to these challenges, we introduce ADAPT, a ma-
chine learning-based approach for automatically attributing APTs
at two levels: (1) the threat campaign level, to identify samples
with similar objectives and (2) the threat group level, to identify
samples operated by the same entity. ADAPT supports a variety
of heterogeneous file types targeting different platforms, includ-
ing executables and documents, and uses linking features to find
connections between them. We evaluate ADAPT on a reference
dataset from MITRE as well as a comprehensive, label-standardized
dataset of 6,134 APT samples belonging to 92 threat groups. Using
real-world case studies, we demonstrate that ADAPT effectively
identifies clusters representing threat campaigns and associates
them with their respective groups.
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• Security and privacy→Malware and its mitigation.
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1 Introduction
In contrast to conventionalmalware threats, anAdvanced Persistent
Threat (APT) represents an adversary that pursues its objectives
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over an extended timeframe, adapts to defenders’ countermea-
sures and remains committed to maintaining the necessary level
of engagement to accomplish specific goals [76]. These goals of-
ten involve exfiltrating sensitive data of economic and political
significance while maintaining prolonged access within the target
organization. The complexity of these attacks necessitates adver-
saries who are well-funded professionals and, in many cases, even
have state sponsorship, enabling them to operate with the support
of military or state intelligence agencies [20].

For example, in January 2021, Google’s Threat Analysis Group
(TAG) detected an APT campaign aiming to compromise security
researchers through 0-day exploits and social engineering tactics,
which involved the use of fake Twitter and LinkedIn profiles [111].
This campaign entailed months-long conversations to establish
trust with the targets. Strategically luring researchers, the threat
actors shared a link via Twitter, blog.br0vvnn[.]io. Visiting the link
installed a malicious service on the researchers’ system, providing
a backdoor to an actor-owned command and control server. In
September 2023, TAG uncovered a new campaign, likely orches-
trated by the same threat actors [50]. Both the 2021 and 2023
campaigns were coordinated operations targeting specific entities
and employing similar tactics. TAG identified these threat actors as
likely connected to a government-backed entity in North Korea.

As highlighted by this and similar incidents [85, 107], APT
groups are well-organized entities, planning and executing multiple
campaigns over time. To defend against these adversaries, the
security community relies on prior knowledge of APT campaigns
and groups. However, as threat campaigns and threat groups are
getting more complex and sophisticated, it becomes challenging for
researchers to accurately track and attribute attacks. This challenge
is further exacerbated by the use of different nomenclatures and
methodologies employed by security vendors to organize APT
activities [91, 97]. The absence of structured, comprehensive, and
easily accessible data on threat campaigns and groups hinders
timely campaign identification and group attribution, thus impact-
ing defenses [97]. For example, MITRE ATT&CK serves as a valu-
able resource to track threat groups and their tactics, techniques,
and procedures (TTPs) [73]. However, its exclusive focus on APT
groups leads to a lack of precise information on campaigns and
their associated samples. Even though MITRE introduced the APT
Campaign Framework in September 2022, it currently only lists 30
campaigns [72].

In response to these challenges, we introduce ADAPT (“Attribut-
ing Diverse APT Samples”), an automated machine-learning-based
approach that allows for both APT group and campaign attribution.
Unlike malware detection, which identifies and recognizes mali-
cious software within a system or network, attribution seeks to
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determine if a malicious sample is associated with an APT campaign
or group, providing insight into the adversary’s tactics and identity.
To the best of our knowledge, ADAPT is the first attribution ap-
proach that uniquely focuses on two crucial levels of analysis, i.e.,
the APT campaign level and the APT group level. Attribution at the
campaign level reveals specific campaign details, including tactics,
techniques, and objectives, while attribution at the group level
identifies the responsible entity behind the attack. An automated
attribution approach that promptly clusters samples to an APT
campaign or group, facilitates forensic investigations. This, in turn,
enables the security community to take proactive measures, such
as compiling comprehensive threat reports for Open Source Cyber
Threat Intelligence (OSCTI) and alerting organizations, ultimately
reducing the risk of subsequent intrusions.

Previous research on malware clustering and classification has
primarily focused on identifying malware families and variants
without dealing with the specific domain of APT malware [2, 11,
81, 87]. Meanwhile, research on identifying APT attacks primarily
focused on network-based event analysis [7, 31, 92], which can
have limited visibility on APT actions. Provenance-based anomaly
detection offers a complementary approach [34, 42, 51], but suffers
from dependency explosion problems and challenges in recover-
ing complex causality relationships [37]. A handful of existing
research attempted to attribute malicious samples to APT groups
by relying on executable features such as basic string and code
features [110], function encodings from decompiled code [69], and
API call sequences [33]. Nevertheless, a notable gap remains in
exploring the distinctive characteristics of APTs: Threat groups
use multi-stage attack campaigns frequently leveraging a variety
of file types and cross-platform samples, including 0-day exploits
and custom-developed malware [17, 23, 58]. To extend the state
of the art, which predominantly focused on Windows-based ex-
ecutables, ADAPT performs feature extraction and clustering of
heterogeneous file types, including executables (e.g., PE and ELF
binaries) and documents (e.g., Word documents, PDFs, and RTFs).
Most notably, ADAPT uses a novel set of linking features to find
connections between these different file types.

In summary, we make the following contributions:

• We compile a first-of-its-kind APT dataset of 6,134 samples
encompassing heterogeneous file types from the past 17
years. We manually (re)-label and identify 92 unique APT
groups in the dataset. We further create a reference dataset
for APT campaigns consisting of 230 samples from 22 cam-
paigns and 17 groups.

• We develop a novel methodology and make the first attempt
at APT campaign attribution for both executable and docu-
ment file types, achieving a clustering precision of 93% and
95%, respectively, on the reference dataset.

• We identify and extract a set of linking features that can
facilitate sample correlation, regardless of the file types,
and show promising results in APT group attribution using
illustrative case studies.

Artifacts:We provide our source code, features, and labeled dataset
of diverse APT samples, including executables and documents, at
https://github.com/SecPriv/adapt.
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Figure 1: Simplified example based on the Sidewinder APT. A
threat group conducts a number of threat campaigns that are target-
ing multiple platforms (e.g., Windows and Linux) using different
file types, including macro-enabled or exploit-laden documents that
drop platform-specific executables (PE and ELF).

2 Background and Motivation
A threat group, synonymous with the terms “threat actor” or “adver-
sary,” refers to individuals and groups that pose threats but do not
necessarily imply authorship [77]. Threat groups conduct threat
campaigns, which represent specific instances of coordinated threat
events associated with one or multiple threat sources, typically
organized sequentially over time [78]. Each campaign usually in-
volves a distinct set of targets, tools, and methods employed by a
threat group to accomplish specific objectives.

Equipped with these definitions, we show a simplified example
based on the Sidewinder APT in Figure 1. During the initial phase
of the threat campaign, targeting Windows, as seen in the first
highlighted block, the threat sources encompass a phishing email, a
macro-enabled document, and a PE binary. The second highlighted
block depicts a similar threat campaign conducted with altered
attack vectors, now targeting Linux. In this case, the threat sources
comprise a phishing email, a vulnerable RTF reader, and an ELF
binary. The threat group is the entity that orchestrates thesemultiple
threat campaigns targeting various organizations.

An analyst tasked with investigating the incidents similar to
Figure 1 would begin by analyzing documents and executables
separately, taking into consideration the intrinsic differences in
layout, content, and the compilation process of executable threat
sources (PE, ELF) and document threat sources. They then would
attempt to correlate the following:

(1) The macro-enabled document and the exploit-laden RTF in
the document domain.

(2) The PE binary dropped by the macro-enabled document, and
the ELF binary dropped by the RTF in the executable domain.

(3) Using the command & control (C&C) infrastructure (IP ad-
dresses, domains, and other patterns), they attempt to at-
tribute the threat campaign 𝑋 (and further campaigns 𝑌 and
𝑍 ) to the threat group operating the domain 𝑓 𝑜𝑜𝑏𝑎𝑟 .𝑒𝑣𝑖𝑙 .𝑐𝑜𝑚.

In the next section, we go intomore details of the Sidewinder APT as
a case study to illustrate the challenges specific to correlating threat
sources from multiple campaigns and associating the campaigns
with their respective threat groups.

https://github.com/SecPriv/adapt
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Figure 2: Overview of ADAPT. The first workflow (Intra-Clustering) groups executables and documents using specific and generic features
to identify threat campaigns. The second workflow (Inter-Clustering) uses linking features across all file types to identify threat groups.

2.1 Motivational Case Study: Sidewinder
Sidewinder, also known as Rattlesnake and T-APT-04 [46, 70], is
a threat group believed to be based out of India. In particular, we
focus on how the group uses heterogeneous files and platforms,
adapts their campaigns based on their goals, and the issues around
shared tooling and code reuse between groups.
Heterogeneous Files and Platforms. Sidewinder uses malicious
documents as one of the most common infection vectors. In ad-
dition, analysts have also observed the use of various file types
in different campaigns for delivering malicious payloads [23, 46].
These file types include LNK files used to download RTF files that
subsequently drop JavaScript files or ZIP files containing LNK files
that download HTA files with JavaScript. Further, these files vary
over the years and often evolve with each campaign in an attempt
to complicate analysis and evade detection. Moreover, some of the
document file types are cross-platform and embed platform-specific
exploits. A noteworthy similarity lies in the group’s utilization of
the Microsoft Office memory corruption vulnerability CVE-2017-
11882 [75] as a means to initiate the compromise on target hosts.
Additionally, Sidewinder has also been spotted using the Binder
exploit to attack mobile devices [106]. This demonstrates how the
group strategically employs multiple file types and exploits multiple
platforms, utilizing 0-day vulnerabilities, to significantly increase
the likelihood of a successful attack. While the utilization of a
variety of file formats, besides the widespreadWindows PE binaries,
is a technique employed by both APTs and conventional malware
threats, as noted in previous studies [13, 93, 99], our research is
specifically focused on APTs and their distinctive characteristics.
Varied and Persistent Campaigns. Sidewinder uses spear phish-
ing to obtain credentials from targeted organizations [103] includ-
ing the distribution of maliciously crafted documents containing
executable payloads [23]. The themes and topics of phishing pages
and malicious documents adapt to the campaign’s objectives. These
objectives can involve gaining sensitive information related to
COVID-19 research or territorial disputes involving Nepal, Pakistan,
India, and China [46]. These variations have been described as
the group’s effort to craft unique campaigns based on the target
organization and global affairs [106].

In 2022, Sidewinder introduced a new custom tool (SideWinder.
AntiBot.Script) to redirect victims to download the initial pay-
load from a compromised website [36]. Sidewinder’s persistence
and varying tactics across multiple targets complicate attribution.

Security vendors tracking the same APT group from different
campaign perspectives often generate overlapping or fragmented
information [86, 103], leading to an incomplete understanding.

Shared Similarities. The utilization of common components in
the attack chain, code reuse, and the sharing of toolkits among
different threat groups also create challenges for researchers in
accurately attributing a sample to its respective threat group [10].
For instance, in at least two investigations, code sharing among APT
groups with opposing targets was highlighted [18, 101]. Initially,
analysts associated a set of samples with either Sidewinder or Donot
groups [24]. However, on further investigation, these samples were
conclusively linked to a third APT group, Transparent Tribe [71],
also known as APT36. Transparent Tribe has been active in South
Asia for over five years, primarily targeting the Indian government
and military organizations. Despite different target regions (India
for Transparent Tribe and Pakistan for Sidewinder and Donot),
these groups reused portions of the Visual Basic Analysis (VBA)
code. The code similarity among the groups resulted in inconsistent
and erroneous attribution. To further complicate the matter, many
APT groups consist of subgroups, each assigned specific tasks.
The collaboration among various APTs makes it challenging to
confidently track and attribute actions to a single entity [9].

3 Our Approach: ADAPT
Motivated by the challenges detailed above, we propose ADAPT, an
attribution approach specifically designed to handle heterogeneous
file types. ADAPT streamlines the attribution process by clustering
samples at two levels. First, at the campaign level, it attributes sam-
ples based on their specific tactics and techniques. This means that
regardless of the campaign’s evolving nature or changing names
over time, ADAPT’s focus on the inherent functionalities enables us
to associate specific samples with an APT campaign. Second, at the
group level, ADAPT considers infrastructure and operational traits,
providing insights into the broader context within which campaigns
operate and attributes samples based on the characteristics of the
APT group. Clustering malware samples is a routine task performed
by malware analysts, as demonstrated by Yong et al. [113]. This
highlights the importance of automating forensic investigations of
APTs through campaign- and group-level clustering

Figure 2 illustrates our approach for analysts using ADAPT dur-
ing security incident investigations. Instead of manual correlation
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of diverse threat sources, analysts can leverage ADAPT to auto-
matically identify if recovered malicious artifacts exhibit indicators
of known or ongoing APT campaigns stored in the APT dataset
(see Section 4). ADAPT’s feature extraction first identifies the file
type and extracts relevant static attributes. Subsequently, for exe-
cutables and documents, ADAPT’s Intra-Clustering attributes the
samples to campaigns (see Section 5). This categorization stream-
lines classification and provides insights into campaign tactics and
techniques, facilitating sample analysis. ADAPT’s Inter-Clustering
enables grouping samples by the threat actor (see Section 6) lever-
aging linking attributes to facilitate correlation based on distinct
characteristics and operational patterns.

Note that we maintain a dedicated clustering step for group and
campaign attribution for two primary reasons. First, as highlighted
in our motivating case study, threat groups execute a wide range of
campaigns targeting various organizations. These campaigns, ini-
tially unattributed, become linked to an APT group following thor-
ough analysis and information gathered from prior campaigns [63,
108]. Second, APT attacks typically involve multiple file types as
shown in our motivational study. Therefore, having a dedicated
group attribution process that accommodates all artifacts associated
with different campaigns proves valuable for linking and associat-
ing samples. This, in turn, simplifies attributing and prosecuting
recurring APT attacks, as exemplified in the FBI indictments of
APT10, APT29, and APT41 [29, 30, 38].

4 APT Dataset
In this section, we describe our APT sample collection process,
as well as the labeling process that we incorporated to ensure
consistency within the dataset.

4.1 Group-labeled Dataset
4.1.1 Data Collection. To collect APT sample hashes, we use Alien-
Vault’s DirectConnect API [4], leveraging their comprehensive
threat intelligence database. By specifically querying for APT-related
pulses, we retrieved 5,990 unique SHA256 hashes associated with a
minimum of 172 threat groups. The threat group labels are crowd-
sourced from the AlienVault community and we collect them along
with the APT hashes. To further expand our dataset and ensure it
includes the latest hashes we extract unique SHA256 hashes from
threat reports published by Unit42 [107] andMandiant [15] between
January 2022 and March 2023. We chose Unit42 and Mandiant
as they are reputable sources known for their reliable and up-to-
date threat reports. Through this effort, we discovered 465 hashes
attributed to ten threat groups. Notably, most of these hashes were
explicitly linked with the Gamaredon APT group, highlighting their
prominent role in the Russia-Ukraine conflict.

Since AlienVault only provides hashes and Indicators of Compro-
mise (IoCs), we use VirusTotal [109] to download the corresponding
6,455 samples. We also query VirusTotal to obtain analysis reports
for the downloaded samples and extract metadata such as the file
type, creation date, and first submission date. The most recent
sample in our dataset was first submitted in March 2023, while
the earliest sample submission date was in May 2006. Note that
the available number of samples for APTs is significantly smaller
compared to generic malware due to their targeted nature. Unlike

commodity malware with its indiscriminate victim selection, APT
malware focuses on high-value targets, aiming for significant im-
pact (often espionage or sabotage) and avoids mass distribution.
This limited presence makes them scarce for collection and analysis,
as noted in prior studies [32, 89].

4.1.2 Data (Re-)Labeling. 2,260 samples (35.01%) in our dataset
have more than one APT name or alias, and 239 (3.7%) samples are
labeled with five or more group names, with the highest number
of labels being 15 for two samples. For instance, some samples are
tagged as ‘Bluenoroff,’ ‘AppleJeus,’ or ‘Hidden Cobra’ which are
all aliases originating from different campaigns of Lazarus. This
highlights the challenges analysts face when correlating campaign
and group data. To address the lack of standardized labels, we
conduct a thorough revision and relabeling process using Malpe-
dia [57] and MITRE [73] and establish consistent group labels.
In instances when a reliable label could not be confirmed due
to disagreements between Malpedia and MITRE, two researchers
independently reviewed threat reports from Unit42 and Mandiant.
They each assigned potential threat group labels and then discussed
and resolved any mismatches or conflicts. This process included
addressing the following issues:
Consistency of Existing Labels: Aliases. Numerous samples are
tagged with aliases representing the same APT group, e.g., ‘Refined
Kitten’ and ‘Elfin,’ which correspond to APT33. We standardize
these aliases following classifications by Malpedia and MITRE.
Consistency of Existing Labels: Umbrella Names.We eliminate
text-based variations and adopt a consistent naming convention
of APTXX, FINXX, or TAXXX for the groups whenever feasible.
For instance, we assign the name APT32 for ‘OceanLotus’ and ‘Sea
Lotus,’ and APT43 for ‘Kimsuky,’ while APT24 encompasses ‘Pitty
Putter’ and ‘Pitty Tiger,’ following Malpedia’s classification.
Consistency of Existing Labels: Non-unique Names. We man-
ually review non-unique names like ‘Transparent Tribe,’ ‘trans-
parenttribe,’ or ‘Transparent Tribe Group,’ and assign the name
‘TransparentTribe’ as the uniform representation.
Outliers: Non-APT Samples.We came across 122 (1.89%) samples
linked to the FireEye Red Team tools that were stolen during the So-
larWinds attack [105]. We classify them as ‘NotAPT’ since they are
not actual attacker tools, but instead part of the data exfiltrated by
the attackers. We also came across ransomware families originally
labeled as ‘Egregor’ or ‘Maze Team’ and classified them as ‘NotAPT.’
Our decision is based on the observation that these ransomware
families are employed by multiple cybercrime groups for financial
gain and are not typically associated with a specific APT group. We
remove these samples from our dataset.
Unlabeled Threat Groups.We identified 44 (0.68%) samples for
which we could not determine the APT group label with certainty
due to two main factors. First, certain threat reports utilize internal
operation names that are not associated with any specific groups
by Malpedia or MITRE. Second, some threat reports discuss the
likely origin of the attack without providing a conclusive group
name. We retain these samples without labels in our dataset.

4.1.3 Dataset Characteristics. After following the approach out-
lined above and excluding 321 (4.97%) ‘NotAPT’ samples, we are left
with a dataset of 6,134 samples. The (re-)labeling effort identified 92
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distinct APT groups, resulting in a decrease of 80 tags compared to
the initial 172 group tags extracted from AlienVault. Table 1 shows
the sample count for the top 15 APT groups in our dataset, along
with the number of aliases provided by Malpedia (lower bound).
The median sample count for APT groups in our dataset is 24.
Diversity of File Types. To extract file type information, we rely
on the VirusTotal file analysis reports associated with the samples.
Through experimentation, we observed that VirusTotal consistently
provided the most accurate and standardized file type information
compared to other methods, such as libmagic [82]. Table 2 provides
an overview of the number of distinct file types in our dataset, as
well as whether ADAPT treats them as executables or documents
(see Section 5). Our dataset contains a total of 3,603 (58.73%) exe-
cutable binaries, including samples targeting Windows, Linux, and
macOS, the latter of which have received limited attention from
the research community so far [21, 54]. The document file class is
another understudied domain [93] and consists of 1,611 (26.26%)
files, includes formats such as Microsoft Word, Excel, PowerPoint,
RTF, PDF, and ZIP, Note that we consider ZIP files as documents
because our feature extraction is capable of extracting attributes
from ZIP files that contain valid document formats. Finally, our
APT dataset also includes Android apps (APK), Windows shortcuts
(LNK), and script files, as well as 152 unknown file formats.

4.2 Campaign-labeled Dataset
Compared to datasets labeled by threat groups, the scarcity of
publicly available, structured, and comprehensive information for
threat campaigns presents an even bigger challenge. To address
this gap and build a reference dataset for threat campaigns, we use
MITRE’s APT Campaign Framework [72]. This campaign tracking
data lists campaigns with standardized identifiers (CXXXX format).
For example, the C00024 campaign is associated with the Solar-
Winds compromise by the threat group APT29.

We extracted MD5, SHA1, and SHA256 file hashes from MITRE
reports and downloaded the corresponding samples using Virus-
Total. However, since not all samples were available on VirusTotal,
we expanded the dataset with samples mentioned in threat re-
ports from Mandiant [59], which offered in-depth coverage of APT
campaigns as recent as March 2024. This combined effort resulted
in the successful download of 231 samples. To ensure accuracy,
we thoroughly examine the corresponding threat reports for each
sample, identifying and removing any false positives and assigning
the appropriate campaign label and group label. Our final dataset
consists of 230 samples representing malware from 22 campaigns
attributed to 17 distinct groups. These samples encompass various
file types, including 142 executable binaries (139 PE, 2 MachO, 1
ELF) and 62 documents (34 DOCX, 9 ZIP, 8 DOC, 5 PDF, 4 HWP, 1
XLSX). We make both this campaign-labeled as well as the above
group-labeled dataset publicly available.

5 APT Campaign Attribution
Unlike detection tasks that solely focus on identifying malicious-
ness, our research automates the analyst’s workflow for malware
campaign classification. This process involves grouping attacks
based on shared characteristics, necessitating information beyond
simple “benign” vs. “malicious” attributes. Establishing connections

Table 1: Top 15 threat groups in our APT dataset.

Threat Group Label Number of Aliases Sample Count

Lazarus 29 527 (8.59%)
Gamaredon 11 446 (7.27%)
TransparentTribe 9 403 (6.56%)
WizardSpider 3 401 (6.53%)
TA505 9 307 (5.00%)
FIN7 8 293 (4.77%)
APT41 16 278 (4.53%)
APT1 11 251 (4.09%)
APT29 15 224 (3.65%)
Turla 21 203 (3.30%)
Kimsuky 5 173 (2.82%)
APT28 23 169 (2.75%)
APT32 15 147 (2.39%)
Sidewinder 4 133 (2.16%)
APT34 10 126 (2.05%)
Others - 2,054 (33.48%)

Total - 6,134

Table 2: Different file types in our curated APT dataset. The
file class indicates whether ADAPT specifically handles files as
executables (Ð), documents (@), or only extracts generic features.

File Type File Class Platform Total #

Windows Portable Executable (PE; EXE) Ð Windows 2,516 (41.01%)
Windows Portable Executable (PE; DLL) Ð Windows 1,019 (16.61%)
OOXML Document @ Cross-Platform 286 (4.66%)
Microsoft Word Document (DOC[X]) @ Cross-Platform 262 (4.27%)
Rich Text Format (RTF) @ Cross-Platform 245 (3.99%)
Microsoft Excel Spreadsheet (XLS[X]) @ Cross-Platform 239 (3.89%)
Android Application Package (APK) Android 227 (3.70%)
Windows shortcut (LNK) Windows 223 (3.63%)
ZIP Archive @ Cross-Platform 129 (2.10%)
OOXML Spreadsheet @ Cross-Platform 104 (1.69%)
Text Cross-Platform 91 (1.48%)
JavaScript (JS) Cross-Platform 66 (1.07%)
Hypertext Markup Language (HTML) Cross-Platform 65 (1.05%)
Portable Document Format (PDF) @ Cross-Platform 60 (0.97%)
Visual Basic for Applications (VBA) Cross-Platform 56 (0.91%)
Powershell Windows 44 (0.71%)
Executable and Linkable Format (ELF) Ð Linux 39 (0.63%)
Adobe Flash Cross-Platform 38 (0.61%)
RAR Archive Cross-Platform 38 0.61%)
Mach Object (MachO) Ð macOS 29 (0.47%)
Hangul Word Processor (HWP) @ Cross-Platform 27 (0.44%)
Microsoft PowerPoint (PPT[X]) @ Cross-Platform 15 (0.24%)
Others - 355 (5.78%)

22+ File Classes 4+ Platforms 6,134

with known threat campaigns (related executables and documents)
serves as a crucial starting point for prioritizing investigation in
identifying attacker objectives and potential consequences [65, 113].

As shown in Table 2, executables and documents constitute the
majority of our dataset. We extract features specifically tailored
for these prevalent file types. Beyond this file-specific features, we
enrich both executable and document representations with generic
features derived from their string content. These generic features,
extractable without specialized parsing, target the detection of
malicious techniques and patterns and apply to various file types.
While we do not perform specific feature extraction for APK and
LNK files, as well as scripts, in this work, the incorporated generic
features are applicable to these file types as well. We acknowledge
the potential for future exploration in this area. Our approach
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prioritizes identifying the most critical features that characterize
campaign-level similarities, rather than creating an exhaustive list
of indicators. Focusing on these key features enables interpretable
and automated campaign attribution across diverse malicious file
types, as demonstrated by our case studies (see Section 9).

Executable Specific Features (EXF). Leveraging prior research
in malware detection [6], [21], [99], and classification [2], [66] we
select features that provide generalizability across the executable
file types while enabling fast clustering. Our decision not to use
type- and platform-specific features collected through more heavy-
weight static and dynamic analysis (e.g., disassembled executables,
call graphs, and system-level execution traces) allows us to compile
a simple yet representative feature set. This reduces limitations
associated with missed run-time behaviors due to the unavailability
of attacker infrastructure or dependence on specific host artifacts.

We extract a comprehensive set of features from executables,
such as section names, libraries, and imported/exported functions.
We use LIEF [102] to parse and extract these features from the 3,603
(3,535 PE files, 39 ELF files, and 29 MachO) executable binaries.
Because imported functions produce a large number of values with
little discriminative power, and libraries, and section names are
common to many different types of malware, we narrow down
the feature set to focus on exported functions and the configuration
version for PE executables. These features demonstrated discrimi-
native potential in our initial experiments on a subset of malicious
samples from distinct campaigns operated by the same threat actor.

For PE, ELF, andMachO executables, we extract 15,047 unique ex-
ported functions from 3,603 binaries, such as DllRegisterServer,
DllUnregisterServer, runtime.gosched_m, FileRipper, net.
dnsDefaultSearch, and runtime.prefetcht0. Additionally, we
identify 11 unique configuration values for the PE executables, such
as WIN_VERSION.SEH, WIN_VERSION.WIN_8_1, and WIN_VERSION.
WIN10_0_15002, which can provide indicators about the attacker’s
build system used in a specific campaign.

Document Specific Features (DCF). From the document file
types, we extract features including macros, obfuscated strings,
document author (if available), application language, and suspicious
keywords. Similar to prior research on document analysis [45, 68],
we use the open-source Python package oletools [47] to parse and
extract malicious content from document file formats, including
ZIP. For ZIP archives, we iteratively parse and extract attributes
from individual files. Consequently, we obtain features from 1,552
files (96.33%) out of a total of 1,611 document samples. Among
those, we identify two informative and distinctive features for our
clustering algorithms: the Application Language Code and the list
of Suspicious Keywords with a total of 2,578 unique values. Suspi-
cious keywords include malicious patterns such as auto-executable
macros, VBA keywords used by malware, anti-sandboxing, and
anti-virtualization techniques identified through pattern match-
ing on macro scripts embedded in document formats (e.g., Word
and Excel documents). Examples of suspicious keywords include
keywords-AMANICRYPTED.exe, keywords-PrivateFunctionF(),
and keywords-AutoExecute. Finally, examples of language codes
include 1251: ANSI Cyrillic (Windows), ANSI/OEM Korean
(Unified Hangul Code), which are standardized codes used to
identify specific languages within the application.

Generic Features: Capabilities (CAP). We use features to detect
and extract distinct characteristics and capabilities in malicious files.
To do this, we leverage the targeted and effective set of YARA rules
developed by the Malcat Community [56]. These rules are designed
to detect modular capabilities within the program, such as code
injection, remote thread routines, privilege escalation for lateral
movement, persistence using scheduled tasks, as well as packers.
With a comprehensive set of 108 rules, we successfully identified at
least one rule for 4,026 samples (65.63%). We also considered using
the Yara-Rules [112] and Elastic’s security detection rules [96] but
found that they often exhibit noise or insufficient coverage.

Following the extraction, we use one-hot encoding to transform
the categorical features from both executables and documents.
These features collectively form the set 𝑆 of all categorical features,
𝑆 = 𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑖 . For instance, consider the feature “Capabili-
ties”, (𝑆1), with values MSVC_2017_linker, MSVC_2017_rich, and
DownloadUsingWinHttp, where 𝑖 = 1 and 𝑘 = 3 unique values.
To represent each value, we employ a binary vector 𝑆𝑖𝑘 where,
𝑆𝑖𝑘 ∈ {0, 1}. We consider the entire set of unique values, assigning
a value of 1 if a particular element is present in the sample.

Generic Features: Strings (STR). Extracting strings frommalware
samples can give insights into a threat group’s preferred syntactic
construction and vocabulary, which can be used to identify the
associated campaigns. We use FLOSS [62] to extract all possible
ASCII and UTF texts from 6,114 samples (99.67%). In addition to
extracting embedded ASCII and UTF strings, FLOSS is also capable
of identifying stack strings (strings constructed on the stack at run
time) and decoded strings (strings decoded in a function) from PE
files, which can enhance the basic static analysis of malicious files.

We preprocess and filter the extracted strings to remove numeric
characters, special characters, non-printable characters, spaces, and
stop words. We also perform Unicode normalization to decompose
Unicode characters into their individual components, ensuring
consistent representation (e.g., 随→ U+968F). After preprocessing,
we employ the CountVectorizer technique with n-grams. This
method calculates the frequency of string tokens in the document.
The effectiveness of this approach has been demonstrated in prior
research on malicious application attribution and malware source
code identification [43, 88]. In our implementation, we set the
parameters of the vectorizer to use n-grams of size 1 to 3, with
a maximum of 10,000 features. After obtaining the vectorized repre-
sentation of the string tokens, we normalize the values of each token.
This step plays a crucial role in integrating the string features with
other numerical and categorical features, ensuring that all features
are scaled within the range of 0 to 1 for the clustering task.

6 APT Group Attribution
Achieving both campaign and group attribution necessitates ad-
dressing the inherent heterogeneity of artifacts employed across
multiple APT campaigns by a specific group (see Section 2). Thus,
our feature selection process leverages domain expertise to identify
attributes that effectively link these diverse threat sources with
group-level signatures. For instance, in the supply chain attack
uncovered by Mandiant [61], the analysis of 11 distinct campaigns
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targeting diverse sectors revealed the use of shared resources (digi-
tal certificates, infrastructure, development tools) across all cam-
paigns, indicating a single threat group. Inspired by real-world
investigations [60, 61, 107], we focus on extracting linkable fea-
tures commonly used by analysts to connect malicious artifacts
across campaigns to threat actors. ADAPT automates the process
of extracting linking features beyond basic file analysis to facilitate
group attribution in APT incidents.

Pattern-based (PAT). To identify the linking characteristics, we
first extract specific patterns from the string features, part of our
generic features (see Section 5). These patterns include IP addresses,
URLs, authentication keys, API keys (e.g., Slack, Gmail, and AWS),
embedded MD5, SHA1, SHA256 hashes, Bitcoin addresses, email
addresses, and Unix and Windows file paths. We choose these
features as they can reveal important traits about the operating
threat group. For example, the presence of a specific file path
like C:\Windows\System32\drivers\<susp_driver_name>.sys
within an APT sample could indicate a threat group’s preference
for installing malicious drivers in a specific location. We leverage a
set of 24 regular expressions to automate pattern matching across
our samples. Out of 6,134 samples in our dataset, we found one or
more patterns in 4,506 samples (73.45%).

Infrastructure (INF). After extracting URLs and IP addresses stat-
ically from the sample’s string content, we then use them to collect
more detailed infrastructure information. This includes the BGP
prefix, autonomous system number (ASN), country code, certificate
fingerprint, and issuer organization. Leveraging the Censys search
engine API [26], we query these identified IP addresses and URLs
for granular host and domain details. Note that we use the ‘datetime’
query to narrow our results on those matching the first submission
date found in the VirusTotal file report. This approach serves two
benefits. First, it helps us focus on a limited set of results, as some
domains can generate a large number of certificate and host results.
Second, by targeting the period when the sample was most likely
to be active, we ensure that the results are more relevant to the
threat group’s activity. Moreover, we exclude the top 500 domains
(e.g., wordpress.com, europa.eu, drive.google.com) and a list of
reserved IP blocks (e.g., 0.0.0.0/8, 127.0.0.0/8) from our search to
ensure that we focus solely on identifying domains and IPs specific
to threat groups. Following this process, we were able to extract
infrastructure features for 2,345 samples (38.22%) in our dataset.
Although these features were not available for all samples, we
included them in our clustering process as they complement the
pattern-based features. A complete list of the pattern-based and
infrastructure features is available as part of our artifact.

To transform the raw linking features, we use a sentence trans-
former to generate text embeddings for clustering. Specifically,
we use the pre-trained sentence transformer model, trained on a
large dataset of 215 million (question, answer) pairs from various
sources [83]. This semantic search model encodes textual features
into a compact vector space, allowing it to capture subtle variations
in complex patterns. These generated embeddings are then com-
pared, for instance, using cosine similarity, to identify sentences
with similar meanings. To illustrate this process, consider four
samples, each containing the URLs: http://a0711854.xsph.ru,
http://a0713099.xsph.ru, http://a0714424.xsph.ru, and

http://ca.mtin.es, respectively. Employing the sentence trans-
former model, we generate encodings for these URLs and set a
similarity threshold of 0.8. As a result, we identify the first three
URLs as highly similar, leading us to assign these three samples to
the same bucket, indicating their similarity based on the closely
related URLs. The last sample remains in a separate bucket. We
tried different pre-trained models [27, 28] and thresholds, and
found that the best combination was the “multi-qa-MiniLM-L6-
cos-v1” model with a 0.8 similarity score. We extend this approach
to certificate issuer organizations (e.g., “Verisign," “DigiCert Inc."),
email addresses, and Windows and Linux file paths.

Further, to eliminate overly common features, we analyzed their
frequency of occurrence in the dataset.We perform feature selection
on a subset of samples and determine thresholds by examining the
distribution of feature frequencies in the validation set. Specifically,
we identify a threshold of 0.75. To retain the most meaningful
features, we calculate the percentage of samples in which each
feature appears and remove those present in more than 75% of
the samples. Common examples of such elements include generic
cloud URLs, IP addresses, country codes, and common certificate
names. This approach refines the dataset by highlighting rare and
potentially more meaningful relationships between the samples.

7 Clustering Implementation
Due to the general lack of reliable ground truth labels for APT mal-
ware, accurately classifying samples is challenging, as demonstrated
by our relabeling efforts (see Section 4). Therefore, unsupervised
clustering becomes a feasible solution. We use agglomerative hier-
archical clustering [94], a method frequently employed in malware
clustering [11, 80, 81]. Hierarchical clustering’s strength lies in
its ability to identify clusters of arbitrary shapes, making it well-
suited for capturing complex relationships within the APT domain.
The agglomerative clustering recursively merges similar clusters,
resulting in a dendrogram-like structure. Initially, each data point is
treated as a separate cluster (referred to as a leaf), and the algorithm
computes the distance between these individual clusters.

Our experiments showed that the agglomerative approach can
be computationally expensive for large feature spaces due to its
recursive nature. To address this, we incorporate autoencoders to
learn a latent representation of our features. Autoencoders offer
the ability to learn compact representations of input data by cap-
turing the underlying structure and removing noise or irrelevant
information [98]. This compressed representation allows the clus-
tering algorithm to converge faster. The autoencoder architecture
employed in our approach consists of four layers: an input layer,
two hidden layers, and an output layer. The input layer has the
same number of units as the transformed feature set, while the
hidden layers comprise 32 and 16 units, respectively. To activate the
hidden layers, we employ the rectified linear unit (ReLU) activation
function, due to its computational efficiency [39]. The output layer
mirrors the input layer in terms of the number of units and employs
the sigmoid activation function.

For optimal clustering results, we perform cluster validity analy-
sis, using themetric Sum of Squared Errors (SSE) [79].We iteratively
merge clusters by selecting the below configuration that results in
the lowest change in SSE:
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• Distance Metrics: We consider the Euclidean and Manhattan
distances to measure the dissimilarity between clusters.

• Compute Full Tree: We set the parameter ‘compute_full_tree’
to True in order to compute the complete hierarchical tree
without early pruning.

• Linkages:We iterate over different linkage algorithms, includ-
ing ward, complete, and average, to determine the optimal
method for merging clusters.

• Number of Clusters: We explore various numbers of clusters
to find the most suitable configuration.

Further, to identify the optimal number of clusters, we use the
elbow method. This method involves running the clustering algo-
rithm for different values of clusters (𝑘) and plotting the SSE for
each run. The elbow point, where the change in the SSE starts to
diminish significantly, indicates the optimal 𝑘 for our clustering
tasks. We also experimented with other clustering algorithms such
as HDBSCAN and K-means, achieving comparable results.

We employ the ADAPT Intra-Clustering for APT campaign attri-
bution (see Section 5 and top of Figure 2) for our executable and
document samples. This approach groups samples within dominant
file domains based on their shared similarities. Subsequently, the
ADAPT Inter-Clustering (see Section 6 and bottom of Figure 2) for
APT group attribution groups samples across all files incorporating
the transformed linking features (PAT & INF) extracted from string
content. It is worth noting, that our approach incorporates all file
types from the dataset (see Table 2). Although some files may not
yield readily identifiable patterns through static features, their inclu-
sion allows for a more holistic analysis, and the potential discovery
of subtle connections. However, this inclusivity can lead to singleton
clusters or misclustering. To mitigate this, we employ an analyst-
defined threshold for excluding samples with insufficient features,
ensuring focus on the most informative samples for accurate threat
group identification.

8 Evaluation and Results
In this section, we evaluate ADAPT’s performance and effectiveness
using the campaign-labeled dataset curated from MITRE informa-
tion (discussed in Section 4.2). We report quantitative performance
metrics for the attribution tasks in Section 8.1. We further explore
the relative importance of different features for executables and
documents in attributing threat campaigns in Section 8.2.

Experimental Setup. We implemented ADAPT using the Python
programming language. We performed all experiments on a Win-
dows 11 Pro machine with the following specifications: 12th Gen
Intel(R) Core(TM) i9-12900KS, 3400 Mhz, 16 Core(s), 24 Logical
Processor(s), and 32 GB RAM. To maintain a controlled research
environment, the machine is connected to a dedicated router with
no other devices connected to the network. Furthermore, to pre-
vent interference from Windows Defender Antivirus, we place the
dataset directory in an exclusion folder with real-time monitor-
ing disabled [67]. The dataset comprises 6,134 samples with raw
extracted features stored in JSON files, requiring 15.6 GB of storage.

8.1 Cluster Validity Analysis
Assessing the results of unsupervised clustering algorithms is chal-
lenging due to the lack of ground truth labels. There is no standard
method for validating the output of clustering results [40]. Clus-
tering algorithms aim to group similar objects together based on
metrics such as distance between and within clusters. However,
a key challenge that arises is determining the optimal number of
clusters. As mentioned in Section 7, we determine the optimal
number of clusters by minimizing the Sum of Squared Errors (SSE).
SSE is calculated by summing the squared differences between
the data points in a cluster and the cluster’s centroid. A lower
SSE indicates a more compact and dense cluster, implying that the
objects within the cluster are closely related [100]. SSE measures
the error or deviation within clusters based on the internal structure
of the data, without using external ground truth labels. However, it
is also helpful to analyze the clustering results by comparing them
to existing ground truth labels [11].

Precision and Recall. We use the campaign-labeled dataset de-
rived from MITRE information (discussed in Section 4.2) to validate
our clustering results. This dataset, allows us to measure the level
of agreement between the clusters we obtain and the information
associated with the clustered samples. Bayer et al. [11] proposed
to use precision and recall by establishing a mapping between the
outcomes of their system-level behavioral clustering system and the
reference clustering. In a similar vein, Perdisci et al. [80] presented
an alternative method to evaluate the credibility of clustering re-
sults, concentrating on assessing the cohesion within individual
clusters and the separation between different clusters. Based on
these previous studies, we propose a method to normalize labels
between clustering results and the reference cluster.

Given a dataset of samples 𝑆 = {𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑛}, comprising 𝑛
samples identified by their SHA256 hash, and a set of 𝑡 distinct
ground truth/reference clusters 𝑇 = {𝑇1,𝑇2,𝑇3, ...,𝑇𝑡 }, we apply a
clustering algorithm to the dataset 𝑆 resulting in a set of predicted
clusters𝐶 = {𝐶1,𝐶2,𝐶3, ...,𝐶𝑐 }. Here, 𝑐 represents the total number
of distinct predicted clusters, and each predicted cluster𝐶𝑖 contains
an arbitrary number of samples and is assigned a cluster label 𝑖 .

To normalize cluster labels, we take the dataset 𝑆 , the predicted
clusters 𝐶 , and the ground truth clusters 𝑇 as inputs. For each
predicted cluster 𝐶𝑖 within 𝐶 , we retrieve the subset of samples
𝑆𝑖 from the dataset 𝑆 that belong to that specific predicted cluster
𝐶𝑖 . Subsequently, we count the occurrences of each ground truth
cluster label 𝑡 within 𝑆𝑖 and identify the label with the highest count,
denoted as 𝑡majority. We assign 𝑡majority as the normalized cluster
label 𝑁𝑖 for the predicted cluster 𝐶𝑖 . We repeat the normalization
process for all predicted clusters in 𝐶 , generating the collection of
normalized cluster labels 𝑁 = 𝑁1, 𝑁2, 𝑁3, ..., 𝑁𝑐 . Using normalized
cluster labels 𝑁 and the ground truth labels 𝑇 , we define:

True Positives (TP): The number of samples that are correctly as-
signed to the same cluster both in the normalized cluster labels 𝑁
and the ground truth labels 𝑇 .

𝑇𝑃 =

𝑐∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝐼 (𝑁𝑖 = 𝑇𝑗 ) · 𝐼 (𝐶𝑖 ∩𝑇𝑗 ≠ ∅)
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False Negatives (FN): The number of samples that are incorrectly
assigned to a different cluster in the normalized cluster labels 𝑁
but belong to the same cluster in the ground truth labels 𝑇 .

𝐹𝑁 =

𝑐∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝐼 (𝑁𝑖 ≠ 𝑇𝑗 ) · 𝐼 (𝐶𝑖 ∩𝑇𝑗 ≠ ∅)

False Positives (FP): The number of samples that are incorrectly
assigned to the same cluster in the normalized cluster labels 𝑁 but
belong to a different cluster in the ground truth labels 𝑇 .

𝐹𝑃 =

𝑐∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝐼 (𝑁𝑖 = 𝑇𝑗 ) · 𝐼 (𝐶𝑖 ∩𝑇𝑗 = ∅)

Here 𝐼 (𝑥) denotes an indicator function that takes an argument 𝑥
and returns 1 if 𝑥 is true, and 0 otherwise.

Clustering Results. Using the above-defined metrics, we calculate
precision, recall, and F1-score to evaluate the performance of our
campaign and group attribution tasks (see Section 5 and 6) on
the reference dataset. Further, we report the clustering metrics,
Silhouette coefficient (SC) [95], and the SSE. SC, a common metric
for unsupervised tasks, ranges from -1 to 1. It measures the average
distance between a sample and its assigned cluster compared to the
distance to the next nearest cluster. Values near 0 indicate clusters
with some overlap, while negative values suggest samples being
placed in the wrong cluster. Our goal is to identify the number of
clusters that minimize SSE and have a positive SC.

Among the executable samples, we achieve a precision of 0.93, a
recall of 0.92, and a combined F1-score of 0.91. The SSE is 1.45 and
the SC is 0.50. Document samples demonstrate higher precision
(0.95) and recall (0.94), resulting in an F1-score of 0.92. The SSE
for documents is 0.72 with an SC of 0.36. We hypothesize that
the clustering performance of documents is better than that of
executables because they tend to exhibit consistent, unique patterns
across campaigns. In contrast, executables often use obfuscation
techniques and display polymorphic behavior, making it difficult
to identify distinguishing features for clustering. However, the 93%
precision for executables demonstrates that ADAPT was able to
effectively distinguish between samples from different campaigns.
For the threat group attribution task, we achieve a precision of 0.92,
a recall of 0.89, and an F1-score of 0.89. While this F1-score reflects
relatively good performance, the SC of 0.41 obtained with the lowest
SSE of 2.70 highlights the challenges of accurately correlating di-
verse samples across executable and document domains. Further, we
report the number of clusters identified in our reference clustering
consisting of 230 samples with 22 campaigns and 17 threat groups.
For the threat campaign attribution task involving executables, we
identified 18 clusters with a precision of 93% and a recall of 92%,
while for documents, we identified 9 clusters with a precision of
95% and a recall of 94%. For the group attribution task, we identified
15 clusters with a precision of 92% and a recall of 89%.

8.2 Feature Importance
In the context of unsupervised clustering algorithms, we assess
the suitability of different features by analyzing their impact on
precision and recall in our reference dataset. Table 3 shows the

Table 3: List of feature categories for executables and their
performance on the campaign-labeled reference dataset. We
evaluate combinations of Executable Specific Features (EXF) and
Generic Features, including Capabilities (CAP) and Strings (STR).

Feature Category # Features Precision Recall F1-score

EXF 22,042 0.85 0.72 0.70
EXF + CAP 22,099 0.88 0.87 0.85
EXF + STR 77,697 0.91 0.90 0.89
EXF + CAP + STR 77,759 0.93 0.92 0.91

Table 4: List of feature categories for documents and their
performance on the campaign-labeled reference dataset. We
evaluate combinations of Document Specific Features (DCF) and
Generic Features, including Capabilities (CAP) and Strings (STR).

Feature Category # Features Precision Recall F1-score

DCF 85 0.88 0.84 0.79
DCF + CAP 142 0.93 0.93 0.92
DCF + STR 44,035 0.92 0.91 0.91
DCF + CAP + STR 44,097 0.95 0.94 0.92

importance of different feature categories for clustering executable
samples. The importance of a specific feature is determined by the
degree to which it increases the overall F1-score. From the table, we
can see that by solely incorporating the executable-related features
(EXF) like exported functions, we observe a relatively low F1-score
of 0.70. However, combining these with the detected capabilities
(EXF + CAP) and string features (EXF + STR) significantly improves
the F1-score to 0.85 and 0.89 respectively.

Similarly, Table 4 shows the importance of different features for
accurate clustering of document samples. Notably, relying solely
on document-related features (DCF), like suspicious keywords,
yields a relatively low F1-score of 0.79. However, incrementally
incorporating modular capabilities (CAP) and strings (STR) into the
feature set results in an F1-score improvement, closely approaching
the highest F1-score of 0.92 achieved when combining all available
features. Our findings suggest that for executables, features such
as capabilities, and string artifacts can serve as strong indicators of
similarity or dissimilarity between samples. Notably, incorporating
string features significantly boosted the F1-score for executable
clustering (from 70% to 89%), whereas the impact on document
clustering was less pronounced (from 79% to 91%). This is likely
because printable strings in executables are more informative than
hierarchically structured formats of documents and PDFs. Šrndic
et al. [99] also highlight this observation in their work on PDF and
Adobe Flash files.

9 Qualitative Case Studies
In this section, we evaluate ADAPT’s clustering using the group-
labeled dataset (discussed in Section 4.1). We focus on two practi-
cal use cases for analysts: (1) We discuss the results of ADAPT’s
campaign and group attribution for randomly selected clusters
from Gamaredon, APT29, and Lazarus, and investigate reasons for
misclustering (see Section 9.1). (2) We discuss ADAPT’s attribution
of unlabeled samples to known threat groups (see Section 9.2).
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9.1 Attributing Labeled Samples

Insights on Threat Campaigns: Gamaredon’s 2017 & 2022
Campaigns. Table 6 (in the Appendix) shows distinct threat cam-
paigns perpetrated by Gamaredon, a suspected Russian cyber espi-
onage threat group [73]. The campaigns occurred in 2017 and 2022,
and using ADAPT Intra-Clustering, we successfully grouped the
samples belonging to these campaigns into the Clusters #C1 and
#C2, respectively.

Unit42 reported the Cluster #C1 samples as a part of the 2017
campaign, which primarily targeted individuals involved in the
Ukrainian military and national security establishment [44]. The
threat actors distributed custom-developed Windows malware that
could download additional payloads, which were distributed as
password-protected self-extracting Zip-archive (.SFX) files. These
SFX files wrote a batch script to disk and installed a remote access
trojan. ADAPT clustered the samples together based on the fol-
lowing shared similarities: the privilege escalation capability via
AdjustTokenPrivileges, the unique linker MSVC_2008_linker, a
distinct string formatting pattern used in naming temporary files
(%s.%d.tmp), and the use of RIPEMD160 for file encryption.

Unit42 reported the Cluster #C2 samples in January 2022 after
observing Gamaredon’s attempt to compromise a Western govern-
ment entity in Ukraine following the Russia-Ukraine conflict [107].
This campaign uses a custom Windows Remote Access Trojan
(RAT) with anti-detection features to evade antiviruses and sandbox
environments. Further, it is capable of downloading and executing
files, capturing screenshots, and running arbitrary commands on
compromised systems. Although the samples in this campaign
evolved over time, ADAPT successfully found unique elements
that persisted through changes, such as the use of a shared linker
and compiler (MSVC_2005_linker and msvc_uv_55) and the use of
GetKeyState for keylogging. Additionally, the unique batch script
pattern 7ZSfx%03x.cmd and the embedded icons with Russian-
language naming convention (ru-ru) helped ADAPT to cluster
the samples.

Takeaway 1: ADAPT’s feature extraction improves basic
static analysis for threat analysts, giving quick insights into
related samples. Additionally, ADAPT’s Intra-Clustering
model can identify samples from different campaigns, help-
ing analysts build and track adversary profiles.

Insights on Threat Groups: APT29 & Lazarus. Table 7 (in the
Appendix) shows a subset of sample hashes associated with APT29.
These hashes were exposed in a July 2020 advisory report, revealing
the WellMess and WellMail custom malware [74]. This malware
targeted COVID-19 vaccine developers in Canada, the United States,
and the United Kingdom to steal vaccine-related data. Interestingly,
Japan’s Computer Emergency Response Team (CERT) observed
the deployment of WellMess within a Japanese organization as
early as 2018 [104], indicating the malware’s presence in various
campaigns targeting different organizations. Initially, unattributed,
further investigations by the NSA and NSCS linked WellMess and
WellMail to APT29, Russia’s Foreign Intelligence Service, which is
also suspected of orchestrating the SolarWinds campaign [85].

Using group-based linking characteristics to attribute samples
across multiple file types, ADAPT successfully clustered these
hashes belonging to the same threat group in Cluster #G1, encom-
passingWellMess andWellMail campaigns dating back to 2017. The
samples include both ELF and PE executables, with some of these
binaries programmed in Go for cross-compatibility. Inspecting the
shared features that caused ADAPT to group the samples together
revealed that all the samples used similar Golang module file paths,
such as /home/ubuntu/GoProject/src/bot/botlib.Work,
/usr/local/go/src/net/fd_mutex.go, and /golang_org/x/
crypto/curve25519.freeze. This suggests the use ofmutexes and
the curve25519 crypto library. Additionally, we identified similar
MD5 hashes and matching regex patterns embedded in the string
content of the samples, including 1DecemberDuployanDuration
Ethiopic and 15625AdjustTokenPrivilegesAlaskan.

In another example, Table 8 (in the Appendix) shows two MachO
samples associated with the North Korean threat group, Lazarus,
namely JMTTrade and CelasTradePro. These malware samples,
disguised as legitimate cryptocurrency trading applications, have
been used in separate campaigns by Lazarus to target both Win-
dows and Mac systems since at least 2018 [19]. ADAPT effectively
grouped these samples together in Cluster #G2 due to a recurring
Bitcoin pattern embedded within their string content. Notably,
the associated Bitcoin wallet addresses remain active and have
received a total of $179,442 in funds [12]. Furthermore, inspect-
ing the common linking feature set we identified similar URLs
and shared email addresses, such as knzg75@jmttrading.org and
altancan73@jmttrading.org, that facilitated the clustering of
these samples. Additionally, the samples share a distinct certificate
issuer organization, such as WoTrus CA Limited, as observed
from the infrastructure feature set. In February 2021, the United
States government charged three individuals in connection with
this attack, which resulted in a $1.3 billion theft. These charges were
based on infrastructure similarities and online accounts observed
in prior campaigns [25].

These examples demonstrate the effectiveness of using pattern-
based features, such as system file paths, unique file names, email
addresses, Bitcoin identifiers, certificate authorities, and domain
names or URLs, to identify threat actor indicators across campaigns.
While these distinct signatures have traditionally been used by
threat analysts in manual analysis, ADAPT streamlines and auto-
mates the process of extracting and clustering these key patterns.

Takeaway 2: ADAPT’s Inter-Clustering model uses distinct
patterns and infrastructural details to identify threat actor
signatures. This capability expedites the process of connect-
ing attacks carried out by the same threat actor.

Clustering Issues. Although effective in most cases, ADAPT’s
clustering might not be ideal in specific scenarios. For instance,
while analyzing document clusters we identified an outlier: A
document, linked to ‘Operation Dream Job’ (espionage using fake
defense jobs [72]), was not grouped within that category. While
this sample exhibited some differences compared to others in the
campaign, a unique characteristic was the use of similar themes
within the document content (e.g., job descriptions, industry jargon)
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and a Boeing image on the first page. This demonstrates that
including image extraction in the document processing pipeline
can improve the ability of ADAPT to cluster similar documents
based on visual features.

For executables, obfuscation can hinder clustering. For example,
the ‘Andromeda’ campaign [72] used known packers to obfuscate
malware. Older samples (first observed in 2013) employed NSIS-
based packers, while newer versions (observed in 2022) were un-
packed. Our current clustering process grouped the packed samples
together, but the unpacked version ended up in a separate cluster,
highlighting the need for extracting obfuscated content for efficient
clustering. We discuss the issue of packing and obfuscation, includ-
ing a cursory study on how widespread these techniques are across
our dataset, in Section 10.

In some cases, the performance of ADAPT’s clustering for group
attribution was limited by a lack of distinctive threat group char-
acteristics. For instance, some samples from Gamaredon, Wizard-
Spider, and APT29 were grouped together due to the absence of
infrastructure-based indicators and they accessed common file
paths (e.g., C:\Windows\System32\cmd.exe or C:\Windows\
System32\WindowsPowerShell\v1.0\powershell.exe). As dis-
cussed in Section 6, we successfully extracted Infrastructure (INF)
features for 38.22% of the samples. Consequently, the clustering
relied on Pattern-based features (PAT), which may not be sufficient
for accurate group attribution. However, as detailed in Section 7,
these cases can be identified through feature analysis and can be
avoided using threshold-based clustering techniques.

Finally, we also recognize limitations in ADAPT’s clustering,
particularly when APT groups use publicly available offensive
security tools, such as Cobalt Strike, and employ shared infras-
tructure. This can result in campaigns from unrelated groups be-
ing clustered together. Possible remediations include disassembled
code analysis to identify code-level differences, and examining
tool-related characteristics such as Cobalt Strike license numbers.
Another avenue for improvement is incorporating features from
dynamic and behavioral analysis, yet with the caveat of dealing
with environment-sensitive samples [53].

9.2 Attributing Unlabeled Samples
ADAPT’s group attribution identified nine out of the 44 unlabeled
samples in the group-labeled dataset (see Section 4.1) as belonging
to specific APT groups. To verify these attributions, we compared
the samples to all publicly available information, including commu-
nity comments on VirusTotal. Four of the samples had comments
linking them to the APT group that ADAPT clustered them in,
even though the samples were not initially labeled with those
groups because there were no public reports of attribution. These
samples were clustered based on shared URLs, IPs, similar country
codes, and ASNs. Additionally, one of the samples was clustered
with three other samples from APT40 (Chinese state-sponsored
cyber espionage group) based on similar BGP prefixes and ASNs.
The only public information about the sample’s attribution was
that it was linked to a Chinese state actor. Another sample was
clustered with four other samples from APT10, but the community
information linked it to APT3, which are both Chinese threat actors.
Finally, three samples were clustered with known APT groups that

had never been publicly attributed to any threat actor. The first
sample was grouped with another APT3 sample due to a Bitcoin
address pattern. The second sample was linked with six APT28
samples based on string patterns. The third sample was linked to
two Kimsuky document samples because of distinct file paths and
shared Korean domains in the URLs.

We acknowledge that other organizations might have informa-
tion about these samples and can validate our attributions. To help
the community further analyze and verify our findings, we list
ADAPT’s clustering results and the samples’ hashes in Table 9
(in the Appendix), as well as release their features and relevant
information as part of our artifact.

10 Discussion and Future Work
Long-lived APT campaigns pose a significant threat due to their
stealthy nature. Traditional methods struggle, requiring the track-
ing of numerous, chronologically linked events over extended
periods [3, 14]. Our approach, ADAPT, bypasses this limitation
by analyzing inherent features within suspicious or malicious files,
independent of their execution sequence. As detailed in our back-
ground and motivation (see Section 2), APT groups employ varia-
tions in attack vectors and sample modifications throughout a cam-
paign. By identifying shared techniques and capabilities from these
heterogeneous artifacts, ADAPT helps analysts rapidly attribute
the attack, prioritize analysis, and streamline investigations – even
when the attack unfolds asynchronously. Still, we acknowledge
open challenges and avenues for future work:
Packing and Obfuscation. Following the discussion in Section 9
we explored the application of common obfuscation techniques
on our group-labeled dataset comprising 6,134 samples. Based on
previous experiments and recognizing the limitations of existing
packer detection tools [1, 64], we used a combination of Manalyzer,
Detect it Easy, and Yara rules. These tools collectively flagged 222
samples (3.61%) from the entire dataset, indicating the presence of
common obfuscation techniques in those samples.
Content Extraction from Heterogenous Files. The goal of
ADAPT is to use static features for efficient clustering of diverse
files. To improve the attribution results, we aim to develop tech-
niques for identifying and extracting obfuscated and embedded
content (e.g., PDFs) from executables. Additionally, future efforts
will focus on incorporating robust malicious content extraction
from heterogeneous file formats. Our orthogonal study onmalicious
documents [93] highlighted the complexity of non-binary files, par-
ticularly Microsoft Office documents (Word, Excel, PowerPoint) and
RTFs, and their widespread use among sophisticated attackers. Our
study revealed limitations in current document analysis approaches,
such as the inability to correctly identify file formats and manage
emerging file types like OneNote.
Adversarial Manipulation and Evasion.We acknowledge that
certain features within ADAPT may be susceptible to manipula-
tion by adversaries, potentially enabling them to evade accurate
attribution. However, it is important to note that, to the best of
our knowledge, ADAPT is the first system that explores the fea-
sibility of performing both campaign and group attribution using
lightweight features from diverse threat sources. Our approach
leverages domain expertise to identify features useful for attribution.
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Table 5: Overview of Prior Studies on APT Detection and Attribution. Our approach is the only one that handles executables (Ð) and
documents (@) and performs both threat group and campaign attribution, unlike the other malware-based attribution systems. Note that the
limited availability of artifacts (code or data) from prior studies limits our ability to perform benchmarks against them.

Approach Dataset Samples Groups Campaigns Artifacts

APT detection using alert correlation SIEM/EDR
Synthetic data [31] –
Third-party Enterprise Dataset [92] –

APT detection through data provenance DARPA TC and enterprise logs [34, 42, 51, 55] –

APT attribution with knowledge graphs 1,041 OSCTI reports [84] –

APT attribution based on malware samples
1,569 samples, 16 APT groups [110] Ð

864 samples, 5 APT groups [33] Ð

3,200 samples, 2 APT groups [89] Ð

287 samples, 7 APT campaigns [69] Ð

Our Approach: ADAPT 6,134 samples, 92 APT groups
Ð @230 samples, 17 APT groups, 22 APT campaigns

Following this initial selection, as a part of future work, we aim
to rigorously evaluate the robustness of these features against
adversarial manipulation, particularly the use of “false flags” [10].
False flags differ from traditional evasion techniques that aim to
bypass detection (e.g., benign-appearing actions) or hinder analysis
(e.g., anti-analysis tricks). Instead, false flags allow attackers to
mask their true identity and deflect attribution towards another
nation state. This is the closest adversarial manipulation technique
seen in the wild among APTs. To this extent, we identified samples
known to exhibit code reuse across multiple threat actors. In partic-
ular, we analyzed a set of malware samples exhibiting code reuse
across disparate threat actors [101]. These samples were initially
misattributed by analysts to a single threat actor due to shared
VBA macro code (embedded code in documents). Using ADAPT, we
were able to correctly cluster the samples into distinct groups. This
differentiation was achieved by analyzing unique identifiers within
the samples, such as file paths for destination folders and scheduled
task creation methods present in a specific subset of samples.
Concept Drift. Concept drift refers to the phenomenon where the
underlying distribution of data changes over time. In our context,
this couldmanifest as newAPT campaigns are emerging, potentially
leading to changes in how samples are grouped during clustering.
Future work will focus on investigating concept drift’s impact on
ADAPT’s unsupervised setting using rigorous experiments. This
would necessitate using a timestamped dataset to track how the
underlying data distribution evolves. Specifically, we are interested
in observing if new binaries consistently fall within existing clusters
or form entirely new clusters as the attack landscape changes.
RepresentativeDataset.The absence of ground truth datasets that
encompass multiple threat groups and include heterogeneous file
types remains a significant open research challenge. Furthermore,
we did not encounter any dataset with threat campaign labels,
prompting us to curate our own dataset (see Section 4), which
we provide as part of our artifact. Still, the scale of our dataset
is limited, with, on the one hand, APT samples inherently being
less widespread than generic malware and the effort involved in
manually (re-)labeling the samples.

Furthermore, Arp et al. [8] showed that data sampling biases
and data snooping can invalidate the results of machine learning
models in security applications. We mitigate these risks by using

real-world malicious files from trusted sources instead of synthetic
datasets. However, sampling bias is still possible due to the over-
representation of certain groups and file types. Additionally, data
snooping is less straightforward in unsupervised clustering than in
supervised learning, so we exercise caution in data handling. We
use the reference dataset only to evaluate clustering results based
on the chosen algorithm and generalized parameters developed
during the clustering phase.

11 Related Work
Table 5 shows a summary of the most closely related prior work on
APTs. In the following, we discuss related APT datasets, and prior
approaches on APT detection and attribution.
APT Datasets. Gray et al. [32] developed a promising APT dataset
comprising 17,513 APT samples belonging to 275 APT groups
by mining threat reports. However, their dataset only included
executable samples (PE, and ELF files) and lacked other file types,
particularly documents. Similarly, Laurenza et al. [48] curated a
dataset comprising exclusively binary samples, whereas the dataset
from cyber-research [22] contains APT samples belonging to only
12 APT groups. Our dataset includes a wide range of file types from
92 APT groups, overcoming the limitations of previous datasets.
APT Detection. Existing research in APT detection leverages alert
correlation to identify anomalous behaviors or APT footprints.
Ghafir et al. [31] proposed MLAPT, a machine learning system for
APT detection using network traffic data, while Sachinananda et
al. [92] focus on correlating security alerts from various sources,
such as Intrusion Detection and Prevention Systems (IDS/IPS),
Endpoint Detection and Response (EDR), and Security Information
and Event Management (SIEM) to cluster alerts associated with the
same APT attack scenario. Provenance graphs have also emerged as
a state-of-the-art approach in APT detection. ANUBIS [7] leverages
provenance graphs to capture causality and detect APTs. Similarly,
APTHunter [55], Unicorn [34], NODLINK [51], and MAGIC [42]
focus on provenance-based anomaly detection using audit logs.
These approaches, however, require raw log access, suffer from de-
pendency explosion issues, and present challenges in reconstructing
complex APT attack causality [37]. Existing research focuses on
APT detection and hunting, leaving a gap for a comprehensive
framework in APT sample correlation and attribution. We address
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this distinct yet complementary aspect. Our work leverages mali-
cious artifacts to facilitate correlation, aiding investigations even
without a complete understanding of the attack causality chain.

APT Attribution. Marquis-Boire et al. [65] manually extracted
static features specific to APT malware, such as C&C infrastructure,
string constants, and data exfiltration methods, to link executables
from the same authors. Rosenberg et al. [89] propose deep learning
for APT group attribution using sandbox analysis reports of PE
binaries. While they perform classification between Chinese and
Russian APT groups, specific groups remain undisclosed. Wang et
al. [110] explore string and code features with random forest and
DNN classifiers for APT malware attribution across 16 APT groups
(1,569 samples). Han et al. [33] use dynamic API sequences for APT
malware detection and group identification using 864 APT samples.
However, limited public availability of the system and dataset, along
with potential ground truth issues, hinder the broader evaluation
of these approaches. Additionally, Mirzaei et al. [69] propose Scruti-
nizer, a system for detecting code reuse in PE malware binaries via
function-level decompiled code similarity analysis. Throughmanual
verification of samples, they identified 12 previously unknown
APT-linked samples. However, Scrutinizer’s reliance on a custom
sandbox environment for intermediate results limits reproducibility
and an unlabeled dataset of hashes hinders rigorous benchmarking.
Finally, Ren et al. [84] propose a cybersecurity knowledge graph
model for APT group attribution leveraging OSCTI information.

While the problem of attribution for non-APT malware has been
studied extensively [5, 16, 32, 49, 81, 90], these related approaches
focus on identifying the author of a binary file and extracting
their stylistic features. Another line of related work on commodity
malware focuses on so-called lineage [35, 41, 52], i.e., identifying
the evolution of and relationships between malware families and
variants. In contrast, our research looks at attribution more broadly,
and extracts features based on the tactics and techniques of the
APT group responsible for the attack and the campaign they are
executing. ADAPT advances the state-of-the-art in APT malware
attribution by addressing its unique challenges. First, we establish
a comprehensive understanding of the APT landscape and its com-
plexities through practical case studies. This includes recognizing
the distinct characteristics of APTs, such as low-and-slow tactics
and multi-stage attacks involving heterogeneous artifacts. Existing
studies primarily focus on PE binaries, while ADAPT performs
attribution for executables and the most common initial attack
vectors [99], including document file formats. Finally, existing
solutions either perform campaign-level or group-level attribution.
ADAPT automates both, allowing for a more systematic attribution
process. Furthermore, to encourage future research and facilitate
reproducibility, we open-source both our dataset, and source code.
We aim for transparency and allow researchers to benchmark their
approaches against our results.

12 Conclusion
Unlike conventional malware threats, APTs are technically sophisti-
cated adversaries conducting well-organized, stealthy, and repeated
campaigns targeting a wide range of organizations. In this paper, we
introduce ADAPT, an automated attribution approach that provides
insight into the adversary’s tactics and identity by performing APT

campaign and group clustering. ADAPT’s two-tiered approach
offers a solution to the challenges of human attribution in the face
of evolving and strategic threat campaigns, the use of different file
types in attacks, and the collaboration among threat groups that
complicates the attribution process. ADAPT clusters executable
and document samples by analyzing malicious characteristics. It
also uses linking features to identify group traits and signatures,
helping connect samples from different campaigns to the same
threat group. Practical case studies on real-world APTs and the
association of unattributed samples to known APT groups demon-
strate how ADAPT simplifies the attribution process, empowering
security practitioners with automated tools to assess and compare
attribution claims. We envision our work involving the collection
of campaign- and group-labeled APT datasets, automated feature
extraction for diverse file types, and the use of clustering techniques
for attribution analysis as a source of inspiration for future research.
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Table 6: Gamaredon threat campaign analysis. (see case study in Section 9.1)

Campaign APT Hashes Campaign Cluster Label

Gamaredon 2017 Campaign

2c5d55619d2f56dc5824a4845334e7804d6d306daac1c23bec6f078f30f1c825 Cluster #C1
3ef3a06605b462ea31b821eb76b1ea0fdf664e17d010c1d5e57284632f339d4b Cluster #C1
4d1a6fe0df9b00f34e3461cb0119224b242c0257b991e8c44a51f0e3304771ea Cluster #C1
63fcfab8e9b97d9aec3d6f243003ea3e2bf955523f08e6f1c0d1e28c839ee3d5 Cluster #C1

Gamaredon 2022 Campaign

61e67302a85ff98eabc589572dbf3bf6e1012207d399b9f2b6b38527833e9198 Cluster #C2
b9dd1e5ec018090b404dd7550d4423ff38ee1f016a5ab214f128544f5b399759 Cluster #C2
cbe1dbd167bccbf61ee8608092a767ce3fbfb5fe5f6e959848d9a8d9091402fb Cluster #C2
3dca96ef38d4b8d1dbb4afed43a22ace93cc3a0a105120d4cf637e6dafe129e9 Cluster #C2

Table 7: APT29 threat group analysis. (see case study in Section 9.1)

Normalized Group Label APT Hashes Group Cluster Label

APT29

84b846a42d94431520d3d2d14262f3d3a5d96762e56b0ae471b853d1603ca403 Cluster #G1
00654dd07721e7551641f90cba832e98c0acb030e2848e5efc0e1752c067ec07 Cluster #G1
0322c4c2d511f73ab55bf3f43b1b0f152188d7146cc67ff497ad275d9dd1c20f Cluster #G1
5ca4a9f6553fea64ad2c724bf71d0fac2b372f9e7ce2200814c98aac647172fb Cluster #G1
bec1981e422c1e01c14511d384a33c9bcc66456c1274bbbac073da825a3f537d Cluster #G1

Table 8: Lazarus threat group analysis. (see case study in Section 9.1)

Normalized Group Label APT Hashes Group Cluster Label

Lazarus
7ea6391c11077a0f2633104193ec08617eb6321a32ac30c641f1650c35eed0ea Cluster #G2
c0c2239138b9bc659b5bddd8f49fa3f3074b65df8f3a2f639f7c632d2306af70 Cluster #G2

Table 9: Attribution of unlabeled samples. (see discussion in Section 9.2)

Potential Group Label APT Hashes Group Cluster Label

APT3 71b201a5a7dfdbe91c0a7783f845b71d066c62014b944f488de5aec6272f907c Cluster #G3

Transparent Tribe bff6270b7c6240c394515dc2505bb9f55d7b9df700be1777a8469143f78d0eb6 Cluster #G4

APT40 f659b269fbe4128588f7a2fa4d6022cc74e508d28eee05c5aff26cc23b7bd1a5 Cluster #G5

APT28
4a9efdfa479c8092fefee182eb7d285de23340e29e6966f1a7302a76503799a2 Cluster #G6
eae62bb4110bcd00e9d1bcaba9000defcda3d1ab832fa2634d928559d066cb15 Cluster #G7
b3cee881b2f9d115c98d431b70a75709aade2317a82a0792c15dce2ffa892679 Cluster #G7

APT15 12e1b00af73101cb297387b6ee5035c4cae04211d995ddd233fb375deb492b0a Cluster #G8

Kimsuky fa71eee906a7849ba3f4bab74edb577bd1f1f8397ca428591b4a9872ce1f1e9b Cluster #G9

APT10 df5f1b802d553cddd3b99d1901a87d0d1f42431b366cfb0ed25f465285e38d27 Cluster #GA
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