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ABSTRACT
Recent breakthroughs in machine learning (ML) have unleashed
several approaches to fingerprinting web traffic based on traffic
analysis. In particular, researchers report impressive classification
performances by modeling HTTPS traces using packet metadata.
Recent works focus mainly on the packet burst metadata (packet
lengths, counts, and directions). The fact that burst metadata charac-
terizes web traces is not surprising per se. Then again, most works
stop at providing evaluation results and do not question the reasons
for the success in qualitative analyses or ablation studies.

In this paper, we try to better understand why and when burst-
based web fingerprinting works. To this end, we follow a protocol-
centric approach —instead of promoting yet another classification
approach—that seeks to investigate the impact of the underlying
protocols on web fingerprinting. We study several research ques-
tions based on typical domain and page classification datasets. Most
importantly, we show where the classification gain comes from, i.e.,
which messages or flows are particularly valuable. In contrast to re-
cent works, we show that the beginning of communication does not
always leak valuable fingerprinting information. This knowledge
allows the design of targeted and, thus, more efficient fingerprinting
attacks and defenses. In addition, we study how data availability
(number of labels) and HTTP protocol features (e.g., caching, user
agents) might skew the classification results. We hope that future
research can profit from this analysis, which complements existing
fingerprinting approaches, by better understanding fingerprinting
methods and respective countermeasures.
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• Computing methodologies → Machine learning; • Security
and privacy→ Pseudonymity, anonymity and untraceability;
Web protocol security.
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1 INTRODUCTION
Recent studies (e.g., [6, 26, 70, 84, 85, 95, 100] and several others)
show that middleboxes can robustly fingerprint HTTPS-encrypted
communication based on payload metadata, without decrypting the
traffic. Suchweb fingerprinting techniques allow for various attacks,
such as domain classification (e.g., revealing which domain a client
talked to), page classification (e.g., identifying which subpage of a
given domain a client visited), and other types of classification (e.g.,
malware traffic detection).

All approaches share the common feature of feeding payload
metadata (length, timing, direction, etc.) sequences of TLS-encrypted
flows to a classification model. Recent works focused mainly on
packet burst information, i.e., the direction of communication, the
number of packets per direction, and packet lengths. Another source
of entropy is the packet timing information, but the major downside
is the bias towards the training network ([100]). The approaches
then mainly vary in implementation details, such as their basis for
length sequences (e.g., sizes of raw TCP segment sizes vs. reassem-
bled TLS payloads) or their chosen classifier (e.g., linear classifiers
vs. deep learning approaches). However, regardless of the design
choices, they perform fingerprinting based on sequences of the
packet burst features from TLS-encrypted communication.

Previous empirical studies consistently report high HTTPS fin-
gerprinting accuracy in various tasks, thus defying the encryption
layer’s privacy guarantees. Such a side channel is a faster alterna-
tive to man-in-the-middle attacks, as it works on encrypted data
directly. However, these fingerprinting models rarely generalize
outside the laboratory conditions. The fingerprinting metadata has
a significant risk of collisions between web pages, and any minor
update in the downloaded content can lead to misclassification.

Due to these limitations, a challenging question is understanding
why fingerprinting is effective in controlled setups and how to use
the insights in real-life attacks and defenses. To that end, various
ML interpretability methods have emerged ([65]), spotlighting the
importance of features for the prediction task. Yet, for traffic analy-
sis tasks, a more intriguing insight comes from correlating the ML
benchmarks with the network protocol’s specifications. Concretely,
by blindly trusting the given approaches to identify characteristic
patterns, we do not know which part of the TLS communication is
significant to the classifier.

https://doi.org/10.1145/3678890.3678910
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Is the TLS handshake or the encrypted payloads’ metadata leak-
ing more fingerprinting information? This unawareness implies
several important aspects of high practical relevance. First, we lack
an understanding of how we could effectively improve the privacy
of TLS-protected communication. Second, most related research
is conducted on whole-stream data, potentially relying on charac-
teristic patterns at the end of a TLS flow. This bloats the state of
classifiers and causes them to model long flows’ whole message
length sequences. It also delays detection to a point where the
communication already happened, which is “too late” for many ap-
plication scenarios such as intrusion prevention systems or domain
censoring. Third, not knowing the reasons for classifiers’ success
increases the risk that we overestimate the power of fingerprinting.
In contrast, if we were able to reveal which phases of HTTPS com-
munication are key to classification, we could judge how robust a
classifier is with respect to changes, such as client - or server-side
defenses.

In this paper, we take a step back and shed light on which phases
of an HTTPS stream contribute to the success of fingerprinting. To
this end, we study a protocol-centric framework using nine research
questions (RQ), aiming to explain the fingerprinting results from
the TLS and HTTP perspectives. This approach is consistent with
the recent trends in ML research, where data-centric methods have
been intensively studied [74, 82, 99]. We first study the setting of
domain fingerprinting in RQ1 and examine the importance of indi-
vidual messages within HTTPS flows. We show that the domain
classification power heavily relies on only three parts of the HTTPS
flow: (1) the server-side TLS handshake, including the certificate,
(2) the first client request, and (3) the first server response. While
subsequent messages slightly improve the domain fingerprinting,
the classifier lacks sufficient entropy without these three initial
messages. This provides important insights into which parts of the
communication we must focus on when designing fingerprinting
defenses, which we investigate in RQ2. We further highlight some
potential pitfalls in the data collection and the benchmarking pro-
cess by investigating the impact of HTTP caching on fingerprinting
(RQ3) and the impact of the dataset diversity on the benchmarking
results (RQ4). We then extend our analyses to an even more chal-
lenging setting in Section 4, namely to page classification. Here,
attackers aim to learn which domain subpage a client visits (RQ5).
As expected, in this setting, the server-side TLS handshake is in-
significant, and the HTTP layer carries the most entropy. We find
that the classification accuracy benefits significantly from (1) focus-
ing on “characteristic” flows instead of just the first flow (RQ6) and
(2) combining multiple flows for the classification task (RQ7). In
particular, we find that static resources fetched in particular flows
often boost classification performance, while other flows do not
add much entropy. This highlights that defenses do not necessarily
have to focus on all streams but can be reduced to HTTPS flows
carrying most of the classification entropy to minimize overhead
(RQ8). Finally, we investigate the impact of the HTTP user-agent
header on page classification (RQ9).

In summary, we provide the following contributions:

• We highlight a set of fingerprinting interpretability tech-
niques from a protocol-centric perspective - focusing on the

TLS and HTTP mechanisms- rather than hiding them under
a simple numerical dataset.

• We analyze in depth which parts of the HTTPS communica-
tion enable domain fingerprinting and page fingerprinting.
We show the key differences between domain and page fin-
gerprinting and how the sources of information vary from
one setting to the other. In contrast to recent work, we show
that the beginning of communication is not always the most
significant source of fingerprinting information.

• We show the side effects of relaxing the empirical setup. In
particular, we show that results from experiments with just a
few hundred labels do not necessarily generalize to realistic
setups.

• We measure how some HTTP features - like HTTP caching
and user-agent changes - can affect the fingerprinting pro-
cess, and we discuss how to circumvent these limitations.

These insights help to better understand the underlying key drivers
for fingerprinting. We see our work as an attempt to complement
the current technological advances in fingerprinting, which apply
more complex models on ever-increasing datasets for this task. We
argue that despite all the advantages of abstracting away from the
question of “Why does it work?”, it is of utmost time to reflect on
what essentially enables website fingerprinting.

2 SETTING, BACKGROUND AND RELATED
WORK

We focus on fingerprinting of HTTPS communication to infer the
domain or page a user visits. Web fingerprinting can pose a signifi-
cant privacy concern. It allows user tracking and mass surveillance
and can ultimately be used to block or censor communication. We
describe our threat model in Section 2.1, provide background infor-
mation in Section 2.2, and survey web fingerprinting approaches
in Section 2.3.

2.1 Threat model
We will study a setting where an active or passive attacker (e.g.,
middlebox) can intercept encrypted HTTPS traffic without the
ability to decrypt it. The attacker aims to use traffic analysis to infer
which domain, or subpage of a given domain, a client visits over
HTTPS. We refer to these goals as domain fingerprinting and page
fingerprinting, respectively.

Due to the security guarantees of HTTPS/TLS, the only informa-
tion available to the attacker is network metadata. The attacker has
no local information (like CPU counters and memory usage) about
the client or server. We assume the analyzed traffic comes from stan-
dard browsers without custom defenses in the session encryption.
Some browsers add padding to the client handshake packets (e.g.,
Chrome). We focus on the most recent TLS version, v1.3 [78, 79].
We restrict the attacker’s access to HTTPS flows only and ignore
information they could infer from encrypted DNS [10, 87].

2.2 Background
Type of features in HTTPS and feature modeling: TLS offers
solid guarantees for the security of the HTTP application layer.
Assuming that the parameters of the TLS communication (Server
Name Indication, TLS extensions, server certificates) are encrypted
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Figure 1: High-level overview of a TLS 1.3 session. The Client (orange) and Server (violet) agree on the session keys to secure
subsequent HTTPS requests/responses. The Eavesdropper (red) indicates which information can be leaked from each phase.
*SNI is assumed to be encrypted (ECH). **The Certificate is encrypted since TLS 1.3.

- hence invisible to eavesdroppers - the only available sources of
information are the underlying TCP/IP layers and application-layer
meta information - e.g., packet lengths, timings, or bursts.

Web fingerprinting, thus, usually relies on two types of infor-
mation: (1) network-specific information, which is highly corre-
lated to the quality of the local network, such as packet timings
and fragmentation, and (2) network-agnostic information, which is
not affected by the congestion of the local network (e.g., message
lengths, directions, or bursts). Network-specific information can be
effective against defenses like packet length padding. However, it
is tightly bound to the local system and network conditions, and a
generalization across multiple networks is unknown. Due to these
limitations, recent works [26, 100] ignore the timing information
and focus on network-agnostic information – TCP flow identifiers
(source and destination IP and port), reassembled packet length, and
TCP flow sequences. This information can be characteristic since
the application data layer dictates the ciphertext lengths. Server IP
information can help crack the domain classification problem when
there is a direct mapping to the contacted domain. However, in
practice, the IP information can be affected by (1) geolocation - the
same domain can have different IPs in different regions, (2) cloud
load-balancing - the cloud vendors can optimize the resource usage
by moving or deleting containers allocated to a domain, or (3) same
IP multi-domain tenancy, when multiple domains with different
certificates share the same public IP. Given these limitations, we
only use the server IP information to group the TCP flows and focus
on the payload length.

Recent works focus on two fingerprinting learning strategies.
On the one hand, attackers can collect statistical information from
the bursts - e.g., packet length mean, variance [16, 20, 38, 54, 64, 84].
Such statistics may provide a good starting point for prediction
tasks [2] but might miss subtle burst particularities. On the other
hand, attackers can organize the burst metadata as time series
[14, 22, 23, 52, 53, 56, 83, 85, 93, 100, 101]. Concretely, the dataset is
a 3𝐷 tensor of shape (𝑁𝐹𝑙𝑜𝑤𝑠 , 𝑁𝑃𝑎𝑐𝑘𝑒𝑡𝑠 , 𝑁𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ), where 𝑁𝐹𝑙𝑜𝑤𝑠

denotes the number of flows to be fingerprinted, 𝑁𝑃𝑎𝑐𝑘𝑒𝑡𝑠 is the
number of packets selected per flow (or observation points), and
𝑁𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of packet metadata selected from each
packet. In both formats, the attacker has to accumulate 𝑁𝑃𝑎𝑐𝑘𝑒𝑡

packets for each flow before being able to run the fingerprinting
model. All these models try to learn a predictive task based on the
feature sequences and output the probability for a label (domain or
page).

Semantics of Message Positions: We focus on the time series
approach, which allows us to interpret the classification results
from a protocol-centric perspective. For our analyses, we leverage
the idea that individual packet positions within a TCP stream have
an associated semantic meaning. Without losing generality, assume
we observe an HTTPS flow under TLS 1.3 using 1-Round-Trip-
Time (1-RTT). Such a flow always follows the same semantics.
In particular, the first consecutive TCP payload (𝑃0) contains the
client-side TLS handshake, the second (𝑃1) the server-side TLS
handshake (including certificate), and 𝑃𝑛 𝑃𝑛+1 with 𝑛 ∈ {2, 4, 6, . . . }
are request/response pairs.

Figure 1 illustrates the stages of a TLS session, the exchanged
information, and the series of application-layer requests in more
detail. The handshake consists of two messages between the client
and the server to verify their identities and derive the session keys.
In the Client Hello step, the client announces a set of cryptographic
capabilities (cipher suites) and demands communication with a
specific server (in the server name indication (SNI) extension). Traf-
fic analysis techniques may target this section since it contains
plaintext information about the server (the SNI) and the client (the
TLS extensions or the TLS cipher suites used for creating client
fingerprints [18]). However, there are considerable efforts to close
these windows of attacks: The clients might randomize their TLS
extensions to prevent JA3 fingerprinting attacks [3], and Encrypted
Client Hello (ECH) reestablishes confidentiality of the SNI field [79].
The server replies with its cryptographic capabilities and a certifi-
cate, which includes the hostname and a signed public key. We
focus on TLS 1.3, where the certificate is encrypted.

After the handshake, the client and server speak over encrypted
HTTP, powered by an AEAD (Authenticated Encryption with as-
sociated data) symmetric cipher, such as AES-GCM (Advanced
Encryption Standard Galois/Counter Mode) [81] or ChaCha20-
Poly1305 [69]. AES-GCM is an efficient block cipher with dedi-
cated hardware support, especially in x86 architectures. ChaCha20-
Poly1305 is a stream-cipher-based encryption mode that provides
similar security properties and is often preferred on devices with-
out AES hardware support. Both methods return a ciphertext of
the same length as the plaintext. While this could be fixed with
padding (which we will also study in this work), by default, it leaves
a window of attack for fingerprinting.

2.3 Related work
Table 1 highlights some key aspects of the current work compared
to prior findings. Themain insight is that the fingerprinting analysis
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Technique Examples Clf. Type # Labels Flow Length Multi-Flow Interpretability
DNS-based [10] Domain >1000 unk* Yes No

Raw IP Frames [100] Domain <200 100 No No
Raw TCP Payloads [53] Domain <200 unk No No
Packet Timing-based [8] User ID <1000 unk No No
Packet length-based [64, 84] Page <200 100 No No
CDN Resource-aware [26, 27, 95] Page >1000 # bursts Yes No

ML-Interpretable methods [23] Domain <200 # bursts No Partial**

Protocol-centric methods (Ours) Domain & Pages >1000 # bursts Yes Yes***

Table 1: Overview of existing web fingerprinting works, grouped by their techniques and empirical parameters. One critical aspect
of the current work is to explain the fingerprinting results using a protocol-centric framework. * Number of collected payloads
per flow is unknown / not reported. ** Method specific to Convolutional networks. *** Protocol-centric interpretability method.

should be conducted by treating the underlying protocols (TLS and
HTTP here) as first-class citizens and not hiding them behind a
numerical problem. This framing allows us to correlate the finding
with aspects of the protocols’ rules – e.g., how much information
does the server certificate metadata leak, and for which tasks?
– and provide practical defenses. Another highlight of this work
is that the empirical setup, especially the total number of labels
(pages, domains) and the data collection window, is critical for an
insightful conclusion. Any relaxation in the setup can have severe
consequences for the quality of the results, as we will show in the
experimental section.
Encrypted traffic analysis. A plethora of encrypted traffic analy-
sis techniques have been developed for various purposes: malware
detection [6, 7, 32, 33, 52, 53, 101], client identification [19, 20, 22,
42], and website detection [14, 16, 20, 22, 23, 52–54, 56, 64, 83–
85, 93, 100, 101]. The problem is also studied for other encrypted
protocols, such as Tor networks [46, 68, 70, 89, 90], QUIC [92, 103],
DNS-over-TLS [10, 41, 87], or VPN [29, 44, 57]. Several strategies for
leaking information out of the encrypted traffic are available. One
of the earliest sources of information is the TLS handshake, based
on the server name indication (SNI), certificate, the list of TLS ex-
tensions, cipher suites, or JA3 fingerprints [18, 22, 42]. While deter-
ministic, this attack window is getting narrower with each update
on the TLS protocol [78, 79]. Another thread of research is based on
the inter-arrival times of the packets [8, 10, 29, 68, 87]. A popular
source of information is based on the packet lengths [6, 14, 55, 56,
64, 70, 84, 85, 102]. Modern neural network architectures even allow
for raw traffic processing [23, 33, 52, 53, 57, 68, 83, 89, 90, 92]. On the
modelling side, popular models are Gaussian Distributions [16, 64],
linear models [20], random forests [54], clustering methods [38, 84],
and neural networks [14, 22, 23, 52, 53, 56, 83, 85, 93, 100, 101].
While most of the research is done on single TCP flows, specific to
website fingerprinting, some papers [26, 27, 95] also analyze the
impact of fingerprinting using page content like images.
Defense techniques. Various defensive techniques have also been
investigated in response to fingerprinting techniques. Popular de-
fensive techniques against fingerprinting attacks include padding
techniques ([4, 5, 36, 45, 47, 63, 75, 91]), fixed-rate traffic ([11–
13, 58]), traffic morphing ([5, 17, 77, 91, 96, 97]), chaff traffic ([4,
5, 17, 36, 45, 61, 75, 91]), adversarial perturbations ([67, 77]) and
multihoming/traffic splitting ([24, 40]). Other works focus on the
defense at the application layer by employing half-duplex HTTP

([97]), HTTP pipelining ([61]), Web objects morphing ([17]), or the
HTTP Range header ([60]). These defenses are generic, and most
have a known attack to bypass them. In our work, we do not aim
for a novel defense technique but rather intend to provide a source
of transparency for which sections of traffic leak information. We
apply a basic padding defense to test the critical windows of the
prediction support hypothesis, and we do not attempt to cover all
other channels of attacks (such as timing-based attacks).

Some papers formalize the problem of web fingerprinting de-
fenses from an information-theoretic point of view ([51, 62]). Namely,
they measure the bits of information leakage on Tor traffic. One of
the highlights is that the burst information (including packet statis-
tics) leaks the most information about the visited pages, regardless
of whether any defense is employed. While the timing information
can be used for fingerprinting in closed-world setups, the feature is
biased towards the training network and does not generalize well
to other setups ([100]).

Some related work highlights that the beginning of the commu-
nication usually carries most of the fingerprinting entropy ([23, 36]).
While this conclusion is true for domain fingerprinting tasks, our
protocol-centric analysis identifies other critical windows depend-
ing on the task at hand - domain or page classification.
Empirical Setup.When analyzing network data, there is a com-
promise between practical usability and empirical added value.
Unfortunately, the discussion around the experimental parameters
is often omitted. Various works are inconsistent in the number of
labels in experiments, making it difficult to compare related work.
Some methods are evaluated on datasets with fewer than 200 labels
([23, 53, 56, 64, 83, 84, 100]), 200 − 1000 labels ([102]), or more than
1000 labels ([10, 26, 27]). In this work, we study the impact of such
different empirical strategies to better understand how to compare.
Machine Learning explainability. Interpretability methods for
machine learning focus on explaining the importance of each fea-
ture in the models’ output. Standard techniques include learning
the weights of a linear model, example-based interpretability meth-
ods [48], global model-agnostic methods [98, 104], instance model-
agnostic methods [59, 80], and neural-network-specific methods
[49, 88]. We follow the model-agnostic line of thought and rely
on the best-performing downstream model to correlate with TLS
stages. This approach is popular in other machine learning subdo-
mains, like missing data imputation [43, 66], where the imputation
quality is reported using the performance of a downstream model.
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In contrast to standard ML work, we try to interpret the findings
from a protocol-centric perspective, namely the TLS and HTTP
protocols.

3 HTTPS DOMAIN FINGERPRINTING
Seeing the sheer volume of prior works that used ML models for
web fingerprinting, we now take an orthogonal approach and try
to understand when and why fingerprinting is successful. The
overarching question of our protocol-centric approach is spotting
where the entropy for classification comes from. To this end, we
first model HTTPS traffic similar to related work (Section 3.1) and
employ datasets also used by prior work (Section 3.2), thereby
intentionally approximating typical settings inwhich fingerprinting
approaches have been evaluated. Recall that our focus is not on
providing new methodologies; instead, we would like to explore the
reasons for fingerprinting success.

In this section, we explore several research questions on the ef-
fectiveness of domain fingerprinting (we cover page fingerprinting
in Section 4). We first study if the position of HTTPS payloads influ-
ences the domain classification model’s entropy (Section 3.3) and
how these insights can be used for targeted defenses (Section 3.4).
Finally, we study the impact of HTTP caching (Section 3.5) and of
evaluating too small datasets (Section 3.6).

3.1 Modeling HTTPS Traffic for Fingerprinting
Web fingerprinting aims to map an HTTPS flow, or a set of HTTPS
flows, to a label (e.g., domain or page name). Following the method-
ology of previous studies [24, 28, 71], we model an HTTP flow as a
sequence of reassembled TCP payloads accumulated until the direc-
tion of communication changes (bursts). Concretely, for a flow 𝐹 =

(𝑃0, 𝑃1, . . . ), the subset of payloads (𝑃0, 𝑃2 . . . , 𝑃2𝑘 , . . . ) consists of
client→ server requests, and the subset (𝑃1, 𝑃3 . . . , 𝑃2𝑘+1, . . . ) con-
tains the server → client responses. 𝑃0 is equivalent to the TLS
Client Hello request, and 𝑃1 includes the Server Hello and Certifi-
cate. For each payload 𝑃𝑖 in a flow 𝐹 , the attacker extracts a set
of observable features 𝑓 (𝑃𝑖 ) = (𝑓𝑖1, 𝑓𝑖2, . . . , 𝑓𝑖𝑁𝑓 𝑒𝑎𝑡𝑠

). For a flow 𝐹 ,
𝑓 (𝐹 ) = (𝑓 (𝑃0), 𝑓 (𝑃1), . . . ) denotes the observed features from all
the payloads in the flow. For our experimental section, the feature
set consists of the request’s payload length and direction: 1 for a
request and −1 for a reply. We consider the length of a payload
the difference between the maximum and minimum TCP sequence
number until the flow direction changes or the flow ends. This
enables us to analyze the traffic without handling the overhead of
TCP reassembly and retransmission. Concretely,

𝑓 (𝑃𝑖 ) =
{
(length(𝑃𝑖 ), 1), if 𝑃𝑖 request, 𝑖 = 2𝑘
(length(𝑃𝑖 ),−1), if 𝑃𝑖 response, 𝑖 = 2𝑘 + 1

If any flow in F has less than 𝑁𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 payloads, a
dummy value ∗ is used at training and inference time to mark
the absence. If any flow in F has more than 𝑁𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤
payloads, the flow is cropped to 𝑁𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 payloads.

Given a list of HTTPS flows F = (𝐹1, 𝐹2, . . . , 𝐹𝑁𝑓 𝑙𝑜𝑤𝑠
), the eaves-

dropper seeks to extract their features and create a 3𝐷 tensor of
shape (𝑁𝑓 𝑙𝑜𝑤𝑠 , 𝑁𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 , 𝑁𝑓 𝑒𝑎𝑡𝑠 ). The attacker can train
a classifier𝑀 to solve a specific task based on this tensor. The ar-
chitectures included in benchmarks include logistic regression [21],

k-nearest neighbors [72], random forests [9], XGBoost [15], multi-
layer perceptron [39], RNN/GRU/LSTM [34], CNN [50], and Trans-
formers [94]. Regardless of the architecture, the learned output
𝑀 (𝐹 ) is the probabilities of a set of labels.

3.2 Experimental Setup

Dataset Clf. Type # Samples # Labels
Tranco [73] domain (§ 3) 129,440 6,472

Wikipedia [31] page (§ 4) 101,850 1,455
9GAG [37] page (§ 4) 139,560 2,326
IMDB [25] page (§ 4) 111,440 1,592

Table 2: Datasets for Evaluation. We demonstrate the attacks
and defenses using the Tranco dataset for domain classifica-
tion. We use the Wikipedia, 9GAG, and IMDB datasets for
the page classification experiments.

Datasets.We employ four closed-world datasets, described in Ta-
ble 2. Each dataset has relevant particularities for our analysis: (1)
The Tranco domain dataset is a well-established list for research pur-
poses and supports our domain classification experiments, where
the focus is closer to the beginning of communication; the rest of
the datasets are used for page classification, which we will discuss
in Section 4; (2) TheWikipedia dataset is a lighter page classification
task, having a small network footprint, but irregular URL lengths;
and (3-4) The 9GAG and IMDB datasets are page classification tasks,
rich in additional flows (for images, videos, etc.), and with constant
URL lengths. These datasets are not representative Internet models,
but they allow the modeling of various scenarios to illustrate a set
of attacks and defenses for encrypted traffic fingerprinting. The
data collection process is described in Appendix A.
Evaluation.We work in a model-agnostic setup. To that end, we
benchmark each classification model - Logistic Regression, KNN,
Random Forest, XGBoost, MLP, LSTM, CNN, Transformer - for each
detection task using 5-fold cross-validation and select the highest
score. To get the best insights from the data, we model each test as
One-vs-Rest (OvR). This allows us to a fine-grained debugging and
to identify anomalies in the datasets. However, from this perspec-
tive, we always work with imbalanced datasets and must be careful
about the reported metrics. The details of the evaluation metrics
can be found in Appendix B.

3.3 Protocol-Centric Communication Analysis
Several recent HTTPS fingerprinting works demonstrated high
classification accuracy, with a similar methodology to ours (see
Section 3.1). Interestingly, none of the prior studies have investi-
gated which parts of the communication the classification entropy
stems from. Thus, the exact reasons for the reported high classifica-
tion accuracies remain unknown. Prior work like [23] attempted to
understand the importance of features inside neural networks. In
contrast, we want to create a model-agnostic method for identifying
the regions of traffic that can generate a fingerprint.

The importance of our protocol-centric approach is threefold: (1)
An attacker can optimize the data collection process by focusing on
the exact source of entropy in the observed network traffic (boosting
both efficiency and effectiveness), (2) We gain an understanding
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Figure 2: Detection of the Critical Window of prediction support for Domain fingerprinting (6472 domains) as violin plot. Each
violin plot shows the distribution of F1 scores (y-axis) of all tested domains, differentiated by which HTTPS payloads are
included (x-axis). We highlight two perspectives: a) Mask before 𝑃𝑖 : At 𝐹tail (𝑖), we classify only the payloads starting with index
𝑖 (orange, dashed border, top) – i.e., the effect of excluding payloads 𝑃0 − 𝑃𝑖−1. The upper lane also includes the performance on
the entire flow (red, solid border, first on the left); and b) Mask after 𝑃𝑖 : At 𝐹head (𝑖), we consider only the first 𝑖 payloads (blue,
dotted border, bottom), i.e., the effects of including only payloads 𝑃0 − 𝑃𝑖 for fingerprinting. The dashed horizontal line is the
mean of the scores of each violin next to the numerical value of it. The critical window for prediction support (Definition 3.1)
is located between red dashed vertical bars and with a gray overlay.

of the stages of communication at which classification becomes
possible (e.g., to enable proactive blocking), and (3) Finding the
characteristic communication phases can aid us to design optimized
defenses, e.g., adding padding to the “risky” communicationwindow
only. We thus ask the following research question:

RQ1:Which phases of web communication carry char-
acteristic patterns that allow for domain fingerprinting?

To answer this question, we study which windows of payload
positions in a flow carry entropy. In stark contrast to the data
analytical approach, we argue that the source of prediction power
lies in a few outstanding payloads rather than the entire flow.

Definition 3.1. Critical window for prediction support. Given
any flow of interest 𝐹 = (𝑃0, 𝑃1, . . . , 𝑃𝑁 ), we aim to identify the
minimal interval of indices [𝐼 , 𝐽 ] ⊆ [0, 𝑁 ] - denoted the critical
window for prediction support - so that 𝐹 ′ = (𝑃𝐼 , 𝑃𝐼+1, . . . , 𝑃 𝐽 ) and
for classifier 𝑀 , the performance of 𝑀 (𝐹 ′) does not significantly
differ to the one of𝑀 (𝐹 ) – i.e., the F1 score of the model M satisfies
|𝑆𝑐𝑜𝑟𝑒 (𝑀 (𝐹 )) − 𝑆𝑐𝑜𝑟𝑒 (𝑀 (𝐹 ′)) | < 0.02.

To define the payload inclusion criteria in the critical window
of prediction support, we introduce two new models:

• Mask traffic before a payload: Evaluate while masking flow
payloads before index 𝑠: 𝐹tail (𝑠) = (𝑃𝑠 , 𝑃𝑠+1, . . . , 𝑃𝑁 ). In this
scenario, the predictive performance is based on the tail flow
bursts – without the beginning of the communication up
index 𝑠 − 1.

• Mask traffic after a payload: Evaluate while masking flow
payloads after index 𝑠: 𝐹head (𝑠) = (𝑃0, 𝑃1, . . . , 𝑃𝑠 ). In this
scenario, the predictive performance is based on each flow’s
first 𝑠 bursts, starting with the TLS handshake and cropping
session payloads at the flow tail.

Definition 3.2. Inclusion criteria for payloads in the critical
window of prediction support. A payload 𝑃 is included in the
critical window of prediction support if, given a benchmarking
metric – F1 score here – 𝑃 contributes significantly to at least
one modeling direction. Concretely, we determine the start of the
critical window of prediction support (i.e., 𝐼1) as the first packet
whose omission significantly reduces the F1 score, as can be derived
from the 𝐹tail analysis. Likewise, we determine the end of the critical
window to be the first packet whose inclusion in the 𝐹head analysis
fulfills the criteria defined in Definition 3.1.

The violin plot in Figure 2 illustrates the 𝐹tail and 𝐹head scenarios
for domain fingerprinting using the F1 score metric. The x-axis
represents the message in the communication, with the 𝑃0 − 𝑃1
illustrating the TLS handshake (Client Hello and Server Hello) and
the 𝑃2 − . . . representing the TLS session data. The violin for 𝑃𝑖
encompasses the classification scores for detecting each domain
while including payload 𝑃𝑖 , with the horizontal dashed lines in
each violin representing the mean score across all evaluations. We
use three perspectives in analyzing the data: (1) no traffic masking,
containing the complete flow, in the first red violin on the top-left,
(2) 𝐹tail (𝑖), masking all the traffic before payload 𝑖 , using the orange
violins with dashed border (top row), and (3) 𝐹head (𝑖), masking all
payloads after payload 𝑖 , using the blue violins with dotted border
(bottom). The critical window of prediction support is highlighted
between the red-dashed vertical lines, with a gray overlay.

The violin plot is the first evidence of the benefits of the protocol-
centric approach: We can visualize, debug, and identify the traffic
section that leaks traffic information. For the domain fingerprinting
problem, we can observe that a few payloads are instrumental in
a high-quality prediction. 𝑃0 (Client Hello) does not impact the
prediction quality because, the Chrome browser, our data collection
backend, pads this payload, making it uninformative. Using the
steps in Definition 3.2, we decide that 𝑃1 (Server Hello and Certifi-
cate) is the start of the critical window of prediction support, as its
exclusion significantly degrades the fingerprinting performance in
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the 𝐹tail analysis (orange violin). However, the certificate alone is
not enough for domain fingerprinting, as it can be shared across
multiple domains, creating thus metadata collisions. 𝑃2 (Client Re-
quest) further improves the fingerprinting performance, but his
inclusion is not enough to satisfy the criteria in Definition 3.1. In-
stead, 𝑃3 (First server response) is the first payload whose inclusion
in the critical window leads to an F1 fingerprinting score of 0.844,
0.013 lower than the performance using the entire flow. We con-
clude that the minimal interval that satisfies Definition 3.1 is 𝑃1−𝑃3,
and therefore, the critical window for domain prediction support.

This nuanced analysis of the payload entropy allows us to as-
sess the potential fingerprinting defenses depending on their focus.
For example, seeing that masking 𝑃1 does not entirely undermine
domain fingerprinting, we conclude that defenses that only mask
the server certificates (e.g., Encrypted Client Hello [79] combined
with TLS handshake padding) are ineffective against domain finger-
printing. Instead, defenses have to hide the characteristic patterns
within 𝑃1 − 𝑃3 to destroy classification performance.

In addition, Figure 13 illustrates the same analysis from the
perspective of the AUPRC metric, and Appendix E investigates the
critical window of prediction support from an information-theoretic
point of view, using the WeFDE framework [51].

So far, the findings are on par with prior work ([23, 35]), which
also identifies through other means that the beginning of the com-
munication is critical for traffic fingerprinting.

Takeaways: Domain fingerprinting models rely on a spe-
cific communication window, denoted as the critical window
of prediction support. Models will not get enough entropy
outside that window to perform reasonably well. This indi-
cates that (i) fingerprinting is possible more efficiently by
recording just a few payload sizes per flow, (ii) fingerprinting
can be done at an early point in time, and (iii) defenses must
address the critical window of prediction support.

3.4 Targeted Fingerprinting Defenses
We validate our findings from the other side of the problem – the
web fingerprinting defense. Concretely, we test the effects of ap-
plying a defense only on the critical window of prediction support.
One of the popular defensive techniques against fingerprinting is
traffic padding ([4, 5, 35, 45, 47, 63, 75, 91]).

The general padding defense has several known limitations, the
main one being a significant traffic overhead. We intend to ad-
dress this limitation as a protocol-centric traffic analysis use case.
Our method is not designed to be scalable or general-purpose but
to test whether a targeted padding strategy limits the attacker’s
possibilities.

Using our insights from RQ1, we thus wonder:

RQ2: Can we use the identified critical window of pre-
diction support to defend against domain fingerprinting
more efficiently?

For domain fingerprinting, the primary source of entropy lies in
three payloads. We want to test if adding padding to any or all of
these payloads affects an attacker. We design an experiment using

Padded Section F1 Score AUPRC
Server Cert. 0.718 ± 0.01 0.608 ± 0.01
Client Req. 0.799 ± 0.01 0.755 ± 0.01
Srv. Resp. 0.802 ± 0.01 0.756 ± 0.01
Cert + Req 0.711 ± 0.01 0.612 ± 0.01
Req. + Resp. 0.790 ± 0.01 0.741 ± 0.01

Cert. + Req. + Resp. 0.659 ± 0.01 0.585 ± 0.01
Entire flow 0.636 ± 0.01 0.545 ± 0.01
No padding 0.844 ± 0.01 0.812 ± 0.01

Table 3: Padding Effects on the Critical Window of Prediction
Support. The testing scenario uses an attacker who knows
the padding strategy and augments the training dataset with
padding accordingly. The tests are conducted on 1000 do-
mains, using a padding block of 64 bytes, using the same
dataset as in Figure 2. The scores are reported as the mean ±
95% confidence interval.
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Figure 3:Domain fingerprinting performance by the size of the
padding block, using the AUPRC metric. The critical window
of prediction support is labeled using ’All 3’: certificate, client
request, and server response (𝑃1 − 𝑃3).

an attacker who knows the padding strategy and augments their
training dataset accordingly.

Table 3 illustrates the effects of padding various payloads in
communication using padding blocks of 64 bytes. By masking 𝑃1 −
𝑃3, the fingerprinting AUPRC - 0.585 - suggests that the attacker
has a low chance of discriminating between domains. This score
is significantly lower than when padding only single payloads or
when padding is not used at all. For comparison, we benchmark the
performance by padding the entire flow, which is considerably more
costly. As expected, this leads to a slightly lower AUPRC (0.545)
but not significantly lower than when padding only the 3-payload
window (0.585). These findings confirm that a protocol-centric
approach can also find valuable defense insights.

Finally, we investigate the impact of varying the padding block
size between 16 and 5000 bytes. Figure 3 highlights the effect of the
padding block size when applied to the critical window of prediction
support (labeled ’All 3’), using the fingerprinting mean performance.
The attacker might be able to handle a padding block of less than 64
bytes with careful training, but the low AUPRC score suggests a low
chance of discrimination between domains. Similar to Table 3, the
AUPRC score is slightly lower on the entire flow padding but at a
higher communication overhead. Nevertheless, for padding blocks
larger than 400 bytes, the AUPRC is ∼ 0.5 for the critical window
of prediction support, making the traffic impossible to fingerprint.

Takeaways: Learning the critical window of prediction
support allows for targeted padding defenses against domain
fingerprinting. Padding only the 𝑃1 − 𝑃3 traffic region forces
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the attackers to confuse the domain labels, confirmed by an
AUPRC prediction score of ∼ 0.5.

3.5 Performance Impact of HTTP Caching
We showed that an attacker can adapt and efficiently fingerprint
the communication depending on application-layer particularities.
However, other factors such as the HTTP caching can impact web
communication. This feature does not have a direct workaround at
inference time and must be addressed during data collection and
training.

The servers can instruct the client on how to cache a page in the
HTTP response headers. The Cache-Control directive specifies
how and for how long the client should cache a page. This can
include the no-store header (forbids the client to cache the page),
the no-cache header (instructs the client to ask the server about the
cached content), or the max-age value (specifies the maximum time-
to-live of the cache). In the case of the no-cache directive, the client
can ask the server about the newer content using either a small to-
ken ETag or a time-based strategy with the Last-Modified header
in the request. Irrespective of the chosen caching strategy, caching
influences the request/response behavior within the HTTPS session.
We thus ask:

RQ3: How can the HTTP Caching layer affect the
domain fingerprinting quality?

Cl.Hello
Srv.Hello

Cl.Req.
Srv.Resp.

Cl.Req.
Srv.Resp.

Cl.Req.
Srv.Resp. ......

0.5

0.6

0.7

0.8

0.9

1.0

F1
 s

co
re

train nocache
test cache
train cache
test nocache
mixed

Figure 4: HTTP(S) Caching impact on the Domain fingerprint-
ing problem. The scenarios are: (1) train without any HTTP(S)
caching examples and test on caching samples only (blue
solid line), (2) vice versa (orange dashed line), and (3) train
and test on a mixture of data with/without caching samples
(green dotted line).

Figure 4 shows the pitfalls of ignoring HTTP caching. Train-
ing a model only on HTTP cached data will decrease performance
significantly if the model encounters non-cached HTTP data (or-
ange scenario). This results from additional/modified HTTP request
headers or potentially missing responses. In the reversed scenario,
when we train on HTTP data without caching and test on cached
data (blue line), the models can generalize better due to the avail-
ability of more data. However, they still perform below an F1 score
of 0.7. A mixture of data (green line) is ideal among the scenarios,
and the mean F1 score is 0.858.

We discuss other sources of performance degradation in Sec-
tion 4.5 and Section 5.1.

Takeaways: Attackers can adapt to specific HTTP partic-
ularities and create an efficient fingerprint. However, some
HTTP behaviors cannot be circumvented at data preprocess-
ing and must be addressed at dataset collection. The data

collection procedure must augment the dataset with HTTP
cached/non-cached traffic.

3.6 Performance Impact of Number of Labels
When reviewing recent fingerprinting approaches, we noticed huge
discrepancies concerning the number of labels on which the meth-
ods were evaluated. Some benchmarks use datasets with fewer than
200 labels ([23, 53, 56, 64, 83, 84, 100]), 200 − 1000 labels ([102]), or
more than 1000 labels ([10, 26, 27]). In the previous experiment,
though, we noticed that the classification accuracy changes signifi-
cantly when the diversity of the tested dataset varies. To evaluate
this further, we raise our next research question:

RQ4: To what extent does a different number of labels
(e.g., domains) influence model accuracy?
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Figure 5: Domain detection performance by the number of
distinct labels in the dataset. A model evaluated with fewer
than 100 labels will report close to perfect scores. The perfor-
mance decreases with the number of labels due to collisions
in the certificate lengths, requests, and responses.

In order to answer RQ4, we benchmark the performance by the
number of labels in the dataset. Figure 5 highlights the performance
changes on all metrics when we vary the number of labels available
in the dataset. A fingerprinting benchmark conducted with fewer
than 100 labels quickly achieved perfect or close to perfect scores
on all metrics. Increasing the number of labels in the dataset - and
implicitly the number of samples - can affect the domain classifica-
tion problem in various ways. One possible issue is that more and
more labels may share the same server certificate (in the additional
subjects section), reducing the importance of that TLS stage. An-
other potential issue is the feature set - we rely on payload lengths,
and value collisions are more likely with more samples. It is critical
to evaluate the models in a more practical setup.

Takeaways: Observing the performance on a larger num-
ber of labels is critical to understanding the collision effect.
Evaluating on too small datasets severely over-approximates
a model’s performance in real-world setups.

4 HTTPS PAGE FINGERPRINTING
So far, we have been concerned with domain classification, i.e.,
identifying the domain (not the subpage) a client visited. Page iden-
tification, i.e., finding the subpage on a given domain a client visits,
is significantly more challenging. In Section 3.3, we highlighted
that the server certificate, first request, and first response provide
high entropy for the domain classification. In the page classification
problem, the server certificate is not informative, since it is the same
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for all the pages from the domain. The client request is also not
helpful, especially for websites with a constant URL length (e.g.,
IMDB or 9GAG). Furthermore, the first response might look simi-
lar, if not identical, for dynamic-content pages. These constraints
seem to contradict the general intuition that the beginning of the
communication leaks the most information in the burst metadata
(e.g., [23, 36]) and might force the observer to search for fingerprint
entropy later in the flow or a different TLS flow— but which and
where?

To study this, we now turn to the three datasets for which we
retrieved thousands of pages (see Table 2): Wikipedia, 9GAG, and
IMDB. Instead of varying the domain, in the following, we vary and
aim to identify the visited page. We start with an attempt to use the
first TLS flow (Section 4.1), then show how picking a different, more
characteristic flow improves performance (Section 4.2), and explore
how combining multiple can further boost accuracy (Section 4.3).
Finally, we evaluate targeted defenses (Section 4.4) and how much
HTTP-layer variations impact classification (Section 4.5).

4.1 Page Classification using the First TLS Flow
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Figure 6: Critical window of prediction support (F1 score) for
Page Detection on the Wikipedia dataset. The beginning of
the communication is not as informative as in the domain
fingerprinting task. The legend and representation have the
same meaning as in Figure 2.

The first naïve attempt at classification is to use the first TLS flow
of the web communication as we did for domain fingerprinting.
Indeed, the first flow carries the encrypted HTTP request path we
are trying to detect. In this section, we thus investigate:

RQ5: Which phases of web communication carry dis-
tinctive patterns allowing for page fingerprinting?

We use Wikipedia as an illustrative example that helps better
understand the differences between domain and page classification.
The main characteristics of the samples are that each Wikipedia
page load triggers a small number of additional TCP flows, the
communication in the application layer is done using HTTP/2, and
pages have varying URL lengths. We bootstrap the steps defined in
Definition 3.1 and Definition 3.2 to identify the critical window of
prediction support. In contrast to domain classification, we consider
a longer traffic window in search of entropy to compensate for our
hypothesis that the TLS handshake and initial payloads are no
longer as informative.

Figure 6 shows the highly predictive region in the traffic. We
observe that the front part of the traffic (𝑃0 − 𝑃3) does not help
detect the page. While the pages have various URL lengths, the first
request does not have enough variety to be distinctive, especially
when comparing many pages. The first payloads retrieve generic
content, which is uninformative at the payload length level, while
later packets retrieve page-specific content. We observe that 𝑃4
is the first packet whose exclusion from 𝑃tail massively degrades
the fingerprinting performance - hence, the start of the critical
window of prediction support. We also observe that 𝑃8 is the first
payload whose inclusion in the critical windows leads to an indis-
tinguishable fingerprinting performance compared to the entire
flow. We conclude that the critical window of prediction for this
task is 𝑃4 − 𝑃8.

This is another example of why the protocol-centric approach
to data analysis is beneficial. The current test scenario proves that
the beginning of communication is not always information-rich, as
generally believed. Instead, the fingerprinting task can vary the crit-
ical window of prediction support, and our proposed methodology
can uncover its exact location.

Takeaways: Unlike domain classification, the entropy source
of page classification can be found later in the connection
and not necessarily at the beginning of the flow.

4.2 Identifying Characteristic Subdomains
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Figure 7: Page Detection on 9GAG using a Single Flow. The
main flow 9gag.com (blue) leaks less information than the
accounts-cdn (orange) subdomain.
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Figure 8: Page Detection on IMDB using a Single Flow. The flow
imdb.com (green) offers less entropy than the api.graphql
(blue) andmedia-amazon (orange) subdomains.

Fingerprinting models might have little success on the first TCP
flow. One reason is that various websites load a standard webpage
template on the first request, which populates the page with dy-
namic content in different flows. From the TLS payload size point
of view, the initial flow cannot carry enough useful entropy. A
more powerful fingerprint could be derived from page content like
images or videos [26, 27, 95], loaded on separate TLS flows. In other
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Figure 9: Zoom-in into the Critical Window of Prediction Support for Single-flow Page Classification. Per-Payload performance
for each flow that carries important information on (left) a flow from 9GAG and (right) a flow from IMDB, using 1000 labels
from each dataset.

words, the flow that contains the HTTP path we are trying to fin-
gerprint can have insufficient entropy. We thus examine the utility
of subsequent TLS flows:

RQ6: Can other TLS flows in a page trace contain a
critical window of prediction support for accurate page
fingerprinting?

We illustrate these situations using the 9GAG and IMDB datasets.
Their distinctive features are that the first flow loads generic tem-
plates, which retrieve dynamic content and trigger other TCP flows
to various subdomains, and that the pages have constant URL
lengths and are rich in large resources like images or videos.

Figure 7 highlights the utility of subsequent flows from the 9GAG
dataset by the number of pages in the dataset. The blue line is the
initial flow containing the encrypted HTTP path we want to fin-
gerprint. However, that flow is not rich enough for fingerprinting -
likely related to dynamic content-loading. Instead, a better predic-
tor is the flows to the accounts-cdn subdomain. The flows load a set
of user-related images and information from the comment section
of each page. Similarly, Figure 8 highlights the usage of flows in
fingerprinting a page from the IMDB dataset. The main flow (in
red) to imdb.com is not informative enough for similar reasons as
for 9GAG. In contrast to the 9GAG dataset, IMDB has multiple
subdomain flows that create a useful fingerprint, namely the flows
to api.graphql (page-specific database queries) and media-amazon
(page-specific images).

We can optimize the data collection even further. For each of
the subdomains that are rich in fingerprinting information, we can
follow a protocol-centric approach and identify the exact window
of interest by applying the same technique as on Tranco (Figure 2)
and Wikipedia (Figure 6). Figure 9 exemplifies this process, with
an informative flow for 9GAG (left) and IMDB (right). Similar to
Wikipedia, each subdomain flowmetadata starts to leak information
at later stages. Following Definition 3.1 andDefinition 3.2, the 9GAG
critical window of prediction support is found between payloads
𝑃5 − 𝑃7, while for the IMDB flow is between 𝑃4 − 𝑃8. This confirms
our finding in Section 4.1 and re-enforces the need for the current
methodology to extract the window of prediction support.

Takeaways: The critical window of prediction support for
page classification might be located in subsequent TLS flows,
which could provide a better fingerprint than the initial main
flow.We can identifywhich flows and sections carry themost
information and use it to improve fingerprinting.

4.3 Page Classification using Multiple Flows
As seen in Section 4.1 and Section 4.2, single flows can create a
valuable fingerprint for page classification. However, these flows
might create even more powerful fingerprints when combined. To
visualize this, we use a similar approach as the violin plots from
Figure 2, but instead of masking before and after payloads, we hide
before and after subdomain flows. We then study the following
question:

RQ7: Does combining multiple flows improve page
classification quality?

Consider loading a page on 9GAG. The page will get populated
with content from a set of subdomains on loading. Practically,
𝐹9gag.com = (𝑃0, 𝑃1, . . . , 𝑃𝑁 ), and it will subsequently trigger a set
of flows F9gag.com = (𝐹9gag.com, 𝐹subdomain1, 𝐹subdomain2, . . . ). We
aim to combine multiple subdomain flows and test whether they
leak more information this way. We cannot assume a fixed order
in which the relevant subdomains are contacted. Consequently,
during training, we enforce an order of the subdomains of interest
in the tensor, e.g., "9gag.com" flow is always in the first position,
"subdomain1" flow is always in the second position, etc. At infer-
ence time, we populate the exact slice in the tensor allocated for
the detected subdomain, thus preventing unwanted effects from a
different order of flow creation. Concretely, the observer allocates a
tensor of shape (𝑁𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛𝑠 , 𝑁𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠 , 𝑁𝑓 𝑒𝑎𝑡𝑠 ), where the first
dimension is about the subdomains of interest, the second dimen-
sion contains the window of interest from each connection, and
the last dimension includes the features from each burst.

The multi-flow classification benchmarks on the 9GAG dataset
are illustrated in Figure 10 (left). Compared to single-flow finger-
printing in Figure 7, the multi-flow fingerprinting shows important
improvements in both the F1 score and the AUPRC metric, both
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Figure 10: Critical Window of Prediction Support When Combining Multiple Flows for Page Classification. When combining
multiple TLS flows, the predictive performance for the 9GAG (left) and IMDB (right) datasets, using 1000 labels in each dataset.

Dataset Subdomain(s) F1 Score AUPRC

Wiki
wikipedia 0.791 ± 0.01 0.703 ± 0.01
wikimedia 0.635 ± 0.01 0.528 ± 0.01
Combined 0.804 ± 0.01 0.677 ± 0.02

9GAG

img-9gag-fun 0.585 ± 0.01 0.519 ± 0.01
comment-cdn 0.606 ± 0.01 0.529 ± 0.01

9gag 0.618 ± 0.01 0.558 ± 0.01
accounts-cdn 0.746 ± 0.01 0.645 ± 0.01
Combined 0.831 ± 0.01 0.803 ± 0.01

IMDB

imdb 0.536 ± 0.01 0.500 ± 0.01
api.graphql 0.714 ± 0.01 0.680 ± 0.01

media-amazon 0.679 ± 0.01 0.538 ± 0.01
Combined 0.807 ± 0.01 0.805 ± 0.01

Table 4: Page Detection Performance when combining flows
from multiple subdomains.

being boosted above 0.8 on average, while individual flows were re-
porting scores below 0.65 (AUPRC) and 0.75 (F1), respectively. The
flow breakdown in the diagram shows that flows from accounts-cdn,
img-9gag, and comment-cdn subdomains contribute to improving
the fingerprint. Numerically, Table 4 shows that stacking flows
leads to a Δ = 0.085 improvement for the F1 score over the best
individual flow and to a Δ = 0.158 increase for the AUCPRC score.

We apply the same approach to the IMDB dataset, illustrated in
Figure 10 (right).We also observe improvements over the single flow
fingerprinting in Figure 8. The combined flows from api.graphql
and media-amazon subdomains lead to a distinctive fingerprint.
Table 4 supports these observations, showing a jump above 0.8 in
both the F1 score (Δ = 0.093) and AUPRC (Δ = 0.125) metrics -
compared to the best performing individual flow - indicating the
model’s chance at discriminating pages.

For completeness, we also tested the third dataset for page classi-
fication, theWikipedia dataset. However, Table 4 shows no improve-
ment for either metric, especially not for AUPRC. This could be
related to the data collection process. The wikimedia flows, which
are retrieved over HTTP/2, might lack a detectable pattern due to
multiplexing, and they degrade the information offered in combi-
nation with the wikipedia flows. In our data collection process, we
do not attempt to address the multiplexing complexity but rather
rely on collecting a larger number of samples, which might lead to

detectable patterns.. We further discuss the HTTP/2 multiplexing
limitations in Section 5.1.

Takeaways: Combining multiple flows can lead to better
page classifiers, as shown for the 9GAG and IMDB datasets.
However, the Wikipedia dataset shows that individual flows
might be more beneficial for some domains. Which strategy
works best is thus task-specific and can be discovered using
a protocol-centric approach.

4.4 Targeted Page Fingerprinting Defenses
The analysis for RQ6 and RQ7 highlighted that attackers could
identify page fingerprints on auxiliary flows that carry dynamic,
page-specific content. From a different perspective, prior work
([10, 86]) showed that combining subdomain names can create page
fingerprints. Knowing how to identify which flows carry the most
entropy for page classification, we next want to investigate the
following research question:

RQ8: Can we use the critical prediction windows to
deploy page-specific defenses against fingerprinting?

Similar toRQ2, we aim to test if the protocol-centric findings also
hold for the defensive side. To this end, we again model an attacker
who knows the padding strategy and augments the training dataset
accordingly (see Section 3.4). We benchmark the page classification
performance under various padding block sizes. For each padding
block 𝑁 , each relevant payload in a flow is padded to the next
multiple of 𝑁 . For each of the page classification datasets, we pad
the flows uncovered as predictive in the previous section: (1) For
the Wikipedia dataset, we pad the first TLS flow; (2) For the 9GAG
dataset, we pad the relevant payloads from accounts-cdn, img-9gag,
and comment-cdn; (3) For the IMDB dataset, we pad the important
payloads from the api.graphql and media-amazon subdomains.

Figure 11 illustrates the effects of various padding block sizes
against fingerprinting. The attacker has a different challenge for
each dataset. The Wikipedia padding with a small block size is
adequate since the primary entropy source lies in the text body. This
also suggests that any page edit might make the models mispredict,
having a similar effect. The 9GAG dataset is the most difficult to
defend, needing a padding block of more than 2000 bytes to hide
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Figure 11: Performance when padding the flows against page fingerprinting. Left: Wikipedia. Middle: The 9GAG. Right: IMDB.
We assume an advanced attacker who knows the padding strategy for each dataset and augments the training dataset.

the patterns efficiently. This might be related to the large resources
that create the unique fingerprint from accounts-cdn, img-9gag, and
comment-cdn. The IMDB dataset can be padded with blocks below
200 bytes to hide particularities. The api.graphq subdomain is used
for database requests and does not have a larger footprint, and this
justifies why a smaller padding block is enough. As established in
the isolated flow tests, media-amazon alone is insufficient for good
fingerprint detection.

Similar to RQ2, we work in a toy defensive setup to test the
value of the identified entropy windows. While this setup is not
intended to scale and address all attack channels (like timing-based),
it confirms that protecting a set of messages can be effective against
fingerprinting. Therefore, a protocol-centric analysis can facilitate
more effective and tailored defenses.

Takeaways: Uncovering the combination of flows that fin-
gerprint a website can also be used for defenses. The protocol-
centric analysis could reveal a suitable padding block size
for each page defense task.

4.5 User Agents Impact on Page Classification
The fingerprinting performance is not only susceptible to padding,
as shown in the previous section, but also to any alteration in the
HTTP layer. In RQ3, we reviewed the impact of HTTP caching on
domain fingerprinting. Another potential pitfall is the HTTP user
agents, which can instruct the servers to adapt the page design to
the client’s device. This raises the following research question:

RQ9: How do the HTTP User Agents affect the page
fingerprinting quality?
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Figure 12: HTTP User Agent Impact on the Page classification
problem. The scenarios are: (1) train on web traffic with desk-
top user agents and test on traffic with mobile user agents
(blue line), (2) vice versa (orange line), and (3) train and test
on a mixture of user agents, i.e., both desktop and mobile
(green line).

In order to answer RQ9, we regenerate the 9GAG dataset using
the Chrome Browser on a Linux device and by varying the User-
Agents in the same browsing environment. The setup is relevant
to our research question because the servers adapt the response
content (such as image sizes and layout) to the User-Agent headers.

Figure 12 illustrates the effects of user agents on the 9GAG
dataset, which has different page layouts for desktop (e.g., comput-
ers, laptops) and mobile versions (e.g., phones, tablets). We compare
by separating or mixing desktop and mobile user agents. Besides
altering the response (and its size), the custom user-agent header
also modifies the request size. This situation is reflected in the
performance of downstream models: Models trained on traffic gen-
erated with desktop user agents show a significant degradation
when tested on mobile traffic, with an AUPRC below 0.6 for all the
flows combined. The models trained on traffic with mobile user
agents and tested on traffic from desktop devices show a slightly
better performance, but it is still worse than the reference models
trained on a mixture of user agents. The results highlight the im-
portance of augmenting the datasets with various user agents from
multiple types of devices (laptops, phones, tablets, etc). Note that
training and testing on a mixed dataset leads to an equally good
performance as training and testing on a pure dataset. This shows
that user-agent diversity does not degrade performance if (and only
if) it is considered during training.

A future investigation could simulate the same dataset using
different physical devices and browsers. While the page content
should be similar - since it is guided by the User-Agent header -
various devices and browsers might employ diverse fetching tech-
niques - with different versions of TLS and HTTPS - bringing even
more diversity to the dataset.

Takeaways: LikeHTTP caching, variousHTTP user agents
impact the performance of page classification. The data col-
lection procedure should augment the dataset with various
HTTP user agents from various devices, operating systems,
and browsers.
5 DISCUSSION
In this section, we review some limitations that might threaten
the validity of the results from the protocol and ML perspectives
(Section 5.1); we analyze the benefits of our investigation to other
defense strategies (Section 5.2); and we discuss some other finger-
printing strategies, that we did not cover in this work (Section 5.3).

5.1 Limitations of the HTTPS Fingerprinting
TLS versions. The fingerprinting models should be tailored to the
TLS versions and cipher suites, as the behavior of the encryption
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algorithms might vary. In this work, we focus our research on
the latest version, TLS 1.3, and the behavior of its cipher suites
based on AES-GCM and Poly1305 symmetric encryption. As we
highlight in Section 2.2, these algorithms do not add padding during
encryption by default. Older versions of TLS include other cipher
suites, which have different behaviors and might be considered
deprecated nowadays. For example, TLS 1.2 includes AES with CBC
(Cipher Block Chaining) mode, a deprecated variant of AES that
adds padding during encryption by design. In consequence, different
TLS versions and cipher suites can alter the burst information
differently and require separate modeling.
HTTP versions. We showed that HTTP caching and user agents
impact fingerprinting but can be addressed during training. Dif-
ferent HTTP versions can pose additional challenges and require
a dedicated discussion. HTTP/1.1 behavior is the most accessi-
ble for fingerprinting tasks because it follows a deterministic re-
quest/response pattern. However, HTTP/2 and HTTP/3 include
several new features that can decay the available burst informa-
tion. For example, HTTP/2 multiplexing allows resources to be
fetched asynchronously, thus breaking the request/response pat-
tern of HTTP/1 [64]. The fingerprinting models rely on the order
and atomicity of operations and thus can degrade under HTTP/2.
Future works could investigate robust HTTP/2 dataset creation
techniques.

We emphasize that the HTTP versions mainly affect page classi-
fication tasks, not domain classification tasks. For domain classifi-
cation tasks, a big part of the critical window of prediction support
is in the TLS handshake, which is not dependent on the HTTP ver-
sion. In contrast, the critical window for page classification tasks
can be later in the HTTP connection, and various HTTP versions
and features can alter metadata. In consequence, different HTTP
versions require different modeling strategies for fingerprinting.
Distribution shifts. From the ML perspective, one of the most
significant limitations of fingerprinting models is the performance
degradation under distribution shifts [76]. This paper highlights
the critical window of prediction support for fingerprinting models,
but the identified flows and payloads might evolve and change
over time. While the interpretability factor can help us prepare
and scale such models, it is not a perfect solution. One example
is in the 9GAG datasets, where the components of the comment
section were identified as predictive. The content is expected to
be volatile, and the training datasets must be frequently refreshed
to stay relevant. The exact impact of temporal distribution shifts
requires a separate in-depth analysis.

5.2 Implications to Existing Defense Strategies
Section 3.4 and Section 4.4 discussed the fingerprinting defenses
only from the perspective of traffic padding. As presented in Sec-
tion 2.3, other popular defenses exist: fixed-rate traffic, traffic mor-
phing, chaff traffic, adversarial perturbations, multihoming/traffic
splitting, and application layer defenses.

At first glance, our findings could be adapted to optimize these
other techniques, but an in-depth investigation is required: (1) Fixed-
rate traffic defenses ([11–13, 58]) force the transmission of payloads
at a fixed rate, disrupting the timing information leakage. While our
focus was on packet lengths, the steps could be adapted to identify

the critical window of prediction support for timing attacks, and it
might be different from the packet length critical window. The fixed-
rate traffic defense then could focus on delaying only the payloads
inside the timing critical window of prediction support; (2) Traffic
morphing techniques ([5, 17, 77, 91, 96, 97]) assume knowledge of
server pages and attempt to morph the burst information of the
current page in order to create a collision with other pages on the
server. This defense technique could be optimized to morph only a
specific subset of payloads included in the critical window of predic-
tion support; (3) Chaff traffic techniques ([4, 5, 17, 36, 45, 61, 75, 91])
insert random payloads in the communication to disrupt any burst
information. This defense could add dummy payloads only inside
the critical window of prediction support in order to save band-
width; (4) Adversarial perturbations ([67, 77]) target the attacker’s
model decision boundary by adding tailored noise to payloads to
force it to misclassify the correct label. Similar to traffic morphing,
the noise could be added only in the critical window; (5) Traffic
splitting ([24, 40]) is a technique popular in Tor and multipath TCP
[30] for splitting the communication over multiple TCP connec-
tions. With this defense, an attacker is forced to correlate multiple
connections for the correct label, which is a difficult task. This de-
fense could be extended to distribute the payloads inside the critical
window of prediction across multiple connections; (6) Application
layer defenses ([60]) focus on HTTP features, such as ranged re-
quests, to disrupt sources of information leakage. These defenses
could be extended to identify the critical window of prediction
support and randomly split the bytes requested inside this window
across multiple ranged requests, thus optimizing the entire defense;
(7) Other untargeted defenses could rise out of ad and script block-
ing. These alterations to traffic can affect multi-flow fingerprinting
strategies if an ad or script is included in the critical window of
prediction.

Our aim was to test the importance of the discovered windows
of prediction support in a toy scenario using only padding. We
do not claim to have a scalable defensive solution, and we do not
circumvent all the limitations of the padding defenses that other
methods offer. We hope to see some protocol-centric solutions
applied to the other defenses. Our insights could also be combined
with these techniques and might improve performance as we can
hint at which parts of the network trace have to be targeted.

5.3 Other Fingerprinting Perspectives
Domain Classification using Multiple Flows. Section 3.3 fo-
cused on domain fingerprinting using a single TLS flow, highlight-
ing the source of classification improvement. Section 4.3 reviewed
the page classification problem and showcased that multiple TLS
flows can be combined to train a potent page classifier. One omit-
ted perspective is to use multiple TLS flows to identify domains –
previously studied from the DNS perspective in [10, 86]. The de-
fenses can be extended by identifying which additional TLS flows
help create the domain fingerprint outside the specified window of
entropy in Section 3.3.
Other Sources of Information. In this work, we focus only on
burst-based fingerprinting techniques. Other methods include tim-
ing information, which is not covered in this work.While the timing
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information can defeat padding techniques, this source is biased
towards the training network only, thus ignored by recent works
([100]). The main challenge is finding an invariant across multiple
networks in the timing measurements. In consequence, a dedicated
discussion about the generalization of timing attacks across net-
works would be another interesting future direction.
6 CONCLUSION
In this work, we analyzed traffic fingerprinting from a protocol-
centric perspective, focusing on the particularities of TLS and HTTP
– instead of the common model-centric approach. This novel per-
spective can lead to tailored and optimized solutions for fingerprint-
ing attacks and defenses. It also provides an interpretable way to
understand the differences between various fingerprinting tasks
and their limitations. One direct insight is that, contrary to previous
works, the beginning of the communication is not always relevant
for fingerprinting. Instead, the critical window of prediction sup-
port differs from task to task and can be uncovered using our traffic
analysis methodologies.

We also have shown that the success of web fingerprinting is
highly sensitive to many experimental parameters. Performance
depends significantly on which parts of an HTTPS trace are consid-
ered, how many labels are in the dataset, whether HTTP caching
is present, and how the traces are modeled underneath. These in-
fluences underline that future experiments require more careful
experimentation and that the design decisions must be documented.

As a follow-up to these findings, we believe that further aspects
of fingerprinting have not yet been sufficiently studied. Future
works could analyze the impact of modern HTTP features (e.g.,
multiplexing) on the training data collection. At the same time,
a protocol-centric approach could be combined with other side-
channel attacks, like timing-based, to uncover other windows of
prediction support.

Finally, we argue that future traffic fingerprinting research should
focus on a data-centric perspective, emphasizing the targeted pro-
tocol rather than solely developing new models.
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A DATA COLLECTION
We visit the URLs from Table 2 with isolated Docker containers
based on Selenium [1] and the Chrome browser. We patch the im-
age to parameterize it with various options, such as HTTP caching
or custom user agents. We collect the generated traffic in PCAP
network traces using tcpdump and process the traces using pyshark.
Our experiments use various combinations of HTTP caching and
HTTP user agent options. We construct each dataset by identify-
ing and extracting payload features from each TCP flow in the
traces. The features we include are the burst length and direction
of communication.

B EVALUATION METRICS
We focus on two evaluation metrics in this work, both suitable for
imbalanced datasets. First, we report on the F1 score, the harmonic
mean of precision and recall. The F1 score captures the model’s abil-
ity to make accurate positive predictions (precision = TP/(TP+FP))
while capturing a significant ratio of actual positive instances (recall
= TP/(TP+FN)). It is computed as follows:

F1 =
2 × Precision × Recall
Precision + Recall

(1)

A high F1 score indicates a good balance between precision and
recall, meaning the model can make accurate positive predictions
while minimizing FP and FN. A low F1 score suggests an imbalance
between precision and recall, translating to the model being too
restrictive with the positive class (low recall) or too permissive
(high recall).

Second, we report the AUPRC (Area Under the Precision-Recall
Curve), which quantifies the area under the Precision-Recall curve
under different decision thresholds:

AUPRC =

∫ 1

0
Precision(Recall) 𝑑Recall (2)

A high AUPRC means the model makes optimistic predictions
while minimizing false positives. A low AUPRC suggests the model
struggles with too many false positive predictions or not capturing
enough positive instances.

For every metric, we report macro averages, i.e., take the arith-
metic mean of all the per-class scores.

C DATA AVAILABILITY
To ease reproducibility, we have released the code containing (1) the
scripts used to collect the network traces, (2) the machine learning
models we benchmarked, and (3) the experiments we conducted.
https://github.com/bcebere/Understanding-and-Explaining-Web-

Fingerprinting-with-a-Protocol-Centric-Approach.

D MORE RESULTS
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Figure 13: Detection of the Critical Window of prediction support for Domain fingerprinting (6472 domains) as violin plot. Each
violin plot shows the distribution of AUPRC scores (y-axis) of all tested domains, differentiated by which HTTPS payloads are
included (x-axis). The legend and representation have the same meaning as in Figure 2.
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Figure 14: Attack performance by the size of the padding block
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Figure 15: HTTP Caching impact on the Domain fingerprint-
ing problem (AUPRC score). The scenarios are: (1) train on
data without any HTTP caching example and test on data
with HTTP(S) caching (blue line), (2) train on data with any
HTTP(S) caching example and test on data without HTTP(S)
caching (orange line), and (3) train on a mixture of data with
and without caching and also test on an unseen mixture
(green line).

E INFORMATION LEAKAGE IN DOMAIN
FINGERPRINTING

Li et al. [51] introduced WeFDE, a technique for benchmarking
fingerprinting attacks and defenses by measuring the information
leakage in the dataset. The core idea is to measure the reduction
of the website label’s Shannon entropy (prediction uncertainty)
- 𝐻 (𝑊 ) - in the presence of the fingerprinting information. For
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Figure 16: Critical Window Of Prediction Support for Page
Detection on the Wikipedia dataset (AUPRC score).
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Figure 17: HTTP User Agent Impact on the Page classification
problem (AUPRC score). The scenarios are: (1) train onHTTPS
traffic with desktop user agents and test on HTTPS traffic
with mobile user agents (blue line), (2) vice versa (orange
line), and (3) train and test on a mixture of user agents, i.e.,
both desktop and mobile (green line).

example, a website with 512 subpages will have 9 bits of entropy
(uncertainty) for fingerprinting, 𝐻 (𝑊 ) = 9. Then, we measure the
entropy of the labels in the presence of fingerprinting metadata
𝐹 - 𝐻 (𝑊 |𝐹 ). Finally, the information leakage of the features 𝐹 is
computed as 𝐼 (𝐹 ;𝑊 ) = 𝐻 (𝑊 ) − 𝐻 (𝑊 |𝐹 ). WeFDE approximates
𝐻 (𝑊 |𝐹 ) by computing the individual entropy of each feature in
the dataset, removing redundant features due to high mutual infor-
mation with other features, and by modeling the best-performing
features using Kernel Density Estimators (KDE). As an analogy,
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Model perspective 𝑃0 (Cl. Hello) 𝑃1 (Srv. Cert.) 𝑃2 ( Req.) 𝑃3 (Resp.) 𝑃4 (Req.) 𝑃5 (Resp.) ...
Leaked bits Leaked Δ bits Leaked Δ Leaked Δ Leaked Δ Leaked Δ

𝐹tail (𝑖) 8.95 8.81 ↓ 0.14 8.75 ↓ 0.13 7.42 ↓ 1.33 7.04 ↓ 0.38 6.88 ↓ 0.16
𝐹head (𝑖) 1.18 2.31 ↑ 1.13 6.84 ↑ 4.53 8.41 ↑ 1.57 8.67 ↑ 0.26 8.80 ↑ 0.13

Table 5: Information leakage (bits) breakdown per communication stage for the domain fingerprinting task, using 512 domains.
The models are identical to the ones in Section 3.3, by masking the connection before and after each payload.

Model perspective 𝑃0 (Cl. Hello) 𝑃1 (Srv. Cert.) 𝑃2 ( Req.) 𝑃3 (Resp.) 𝑃4 (Req.) 𝑃5 (Resp.) ...
F1 score Score Δ score Score Δ Score Δ Score Δ Score Δ

𝐹tail (𝑖) 0.857 ± 0.01 0.856 ± 0.01 ↓ 0.01 0.712 ± 0.01 ↓ 0.14 0.683 ± 0.01 ↓ 0.03 0.644 ± 0.01 ↓ 0.04 0.631 ± 0.01 ↓ 0.01
𝐹head (𝑖) 0.5 ± 0.0 0.675 ± 0.01 ↑ 0.17 0.811 ± 0.01 ↑ 0, 13 0.844 ± 0.01 ↑ 0, 03 0.845 ± 0.01 ↑ 0.01 0.856 ± 0.01 ↑ 0.01

Table 6: F1 score numerical breakdown per communication stage, for domain fingerprinting, using 6472 domains. The table can
be used as reference for Table 5.
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Figure 18: Page Detection on 9GAGusing a Single Flow (AUPRC
score). The main flow 9gag.com (blue) is outperformed by the
subdomain accounts-cdn (orange).
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Figure 19: Page Detection on IMDBusing a Single Flow (AUPRC
score). The flow imdb.com (green) performs worse than
api.graphql (blue) and media-amazon (orange).
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Figure 20: CriticalWindow Of Prediction Support Zoom-in For
Single-flow Page Classification (AUPRC score). Per-payload
performance for each flow that carries important informa-
tion is demonstrated on a flow from 9GAG. The benchmarks
are done using 1000 labels from each dataset.
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Figure 21: CriticalWindow Of Prediction Support Zoom-in For
Single-flow Page Classification (AUPRC score). Per-payload
performance for each flow that carries important informa-
tion is demonstrated on a flow from IMDB. The benchmarks
are done using 1000 labels from each dataset.

KDE can be considered the equivalent of histograms but for contin-
uous variables. Using the trained KDE, the framework extracts the
prediction probabilities and approximates 𝐻 (𝑊 |𝐹 ).

This section employs the information leakage framework on the
domain classification dataset. The benchmarking steps are similar
to those in Section 3.3, and we measure the information leakage
by masking payloads before and after each packet in the connec-
tion, using the 𝐹head and 𝐹tail models. In the information leakage
benchmark, we reduce the dataset to 512 labels due to scalability
issues.

Table 5 illustrates the bits of leakage per communication stage
for the domain fingerprinting task. In the 𝐹head modeling (second
row), we can observe how including 𝑃1 − 𝑃3 leads to 8.41 bits
leaks, leaving only 0.59 bits of uncertainty for the task. In the
reversed scenario - 𝐹tail - we observe a smaller drop in leakage
when excluding 𝑃1 − 𝑃3, with ∼ 7 bits leaked even when observing
traffic only after 𝑃4. However, that still leaves 2 bits of uncertainty
for the label prediction, meaning there is a 1

4 chance of guessing
the correct label by using only the 𝑃4− ... information, leading to a
low F1 score. For convenience, we report the matching F1 scores of
the same stages in Table 6, using 6472 domains. In conclusion, the
results are consistent with the findings observed using the F1 score
in Figure 2 and Table 6.
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