
Encrypted Endpoints: Defending Online Services from
Illegitimate Bot Automation

August See
Universität Hamburg
Hamburg, Germany

richard.august.see@uni-hamburg.de

Kevin Röbert
Universität Hamburg
Hamburg, Germany

kevin.roebert@uni-hamburg.de

Mathias Fischer
Universität Hamburg
Hamburg, Germany

mathias.fischer@uni-hamburg.de

ABSTRACT
Automated usage of web services by programs, known as bots,
poses risks such as data scraping, spam, and cyber attacks. For
instance, X suffers from millions of bot accounts typically con-
trolled by relatively fewer adversarial organizations to create fake
likes and comments. The most widely used solution to distinguish
humans from bots (CAPTCHA) is perishing due to advances in
machine learning. Obfuscation techniques in binaries, applications,
or websites are designed to impede the creation of bots but fail to
prevent their scalability. Bypassing these measures often requires
only a one-time effort. We propose encrypted endpoints as a novel
strategy to combat the scalability of web bots, particularly in sce-
narios where bots leverage multiple accounts. For that we assign
unique endpoints (URLs) to each user account, thereby restricting
bot applicability across different accounts and necessitating the
extraction of account-specific endpoints per bot instance. Our ap-
proach is applicable to a wide range of services utilizing endpoints,
including desktop and mobile applications, web applications, and
even static or HTML-only websites. We implemented our approach
directly within a backend framework and observed that the latency
overhead is less than 0.1ms per request, which constitutes less than
1% of the total request time. Our solution, developed as simple
middleware, can be easily integrated in existing projects with low
effort. Additionally, we have extended our approach to the Jinja2
template engine, thereby supporting encrypted endpoints for web-
sites out of the box. Our analysis indicates that our approach not
only effectively protects against simple bots but also, when coupled
with obfuscation techniques, further impedes bot creation.

CCS CONCEPTS
• Security and privacy→Web application security; Software
reverse engineering.

KEYWORDS
web bots, obfuscation, endpoints

ACM Reference Format:
August See, Kevin Röbert, and Mathias Fischer. 2024. Encrypted Endpoints:
Defending Online Services from Illegitimate Bot Automation. In The 27th
International Symposium on Research in Attacks, Intrusions and Defenses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30–October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678918

(RAID 2024), September 30–October 02, 2024, Padua, Italy. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3678890.3678918

1 INTRODUCTION
The automated use of Internet services is an integral part of the In-
ternet and the Web, especially as web services increasingly depend
on each other. This ranges from retrieving resources from CDNs
to price comparison portals to unauthorized automation, e.g., by
bots in social media. In the following, the unauthorized automated
use of a service by scripts or computer programs is called a bot. In
addition, we focus on bots that gain an advantage by creating many
accounts.

While automation is a drive of our Internet, some services should
not be automated, as this can lead to financial and even social dam-
age. Bots significantly increase the load of services (bad bots 27.7%
and automated traffic in total 42.3% in 2021 [2]) and thus increase
infrastructure costs. This applies to all services, but there are cer-
tain services where bots can do greater harm. Social media, for
example, is intended for human users only. Bots that automatically
create or control multiple accounts can be used on a large scale
to spread false information and opinions. This does not only in-
crease infrastructure costs but also affects the satisfaction of human
users. Beyond that, bots have been successfully used in the past to
influence elections [9].

Utilizing the Application Programming Interface (API) or end-
points of a service is the most efficient method for bot development,
known as API/endpoint-based bots. These bots, which operate
through HTTP requests from scripts or automated browsers, can
be easily created using automated tools [24, 34]. These tools facili-
tate extracting service interaction data, simplifying session replays.
Given their prevalence, our paper focuses on defenses against these
bots, as discussed in Section 2.

The main problem of bots is something all bot types have in
common. Once written, they are easy to duplicate and thus to scale.
For example, a X bot that automatically likes everything with a
specific tag, e.g., #conference will work for every account. This
ability to scale is what makes bots so dangerous. While one bot
likely will not have much negative effect, an army of bots will.
Using the endpoint directly is most natural and scales better than
automation via the user interface, so we focus on how such bots
can be restricted.

More and more companies are using anti-bot solutions, such as
CAPTCHA or obfuscation approaches.CAPTCHAs are the most
popular defense against bots. They use problems that are easy for
humans to solve but difficult for computers. However, the number
of problems that fall into this category is decreasing with the ad-
vancement of machine learning [7, 35]. Additionally, CAPTCHAs

https://orcid.org/0009-0003-9588-7096
https://orcid.org/0009-0006-5377-6541
https://orcid.org/0000-0002-6254-8288
https://doi.org/10.1145/3678890.3678918
https://doi.org/10.1145/3678890.3678918

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

negatively impact the user experience and waste time, even when
modern risk assessment approaches do not prompt every user with
a CAPTCHA challenge [1]. As a result, obfuscation approaches are
used to hinder the creation of bots by making it more difficult for
bots to extract information [40], such as URLs, email addresses, or
information about the availability of specific products, e.g., graphic
cards. However, many bots do not need to extract information, e.g.,
those that replay sessions or that use the API directly. For example,
for spamming comments a bot needs to know the endpoint location
(URL) and what data is accepted. Existing obfuscation approaches
leave this aspect out because it changes the way the web works.
While, our proposed obfuscation approach addresses this gap.

Our main contribution are unique encrypted endpoints so that
bots cannot be scaled easily anymore. In more detail, we make the
following contributions:

• We introduce encrypted endpoints to hinder the scaling of
bots. This is achieved by assigning unique endpoints to each
account in a service. Thus, every bot is only valid and usable
for a specific account. We call this encrypted endpoints. Ex-
isting obfuscation techniques for Binaries [12] or for HTML
and JavaScript [14, 40, 44], obfuscate the "application" itself
but not the endpoints. Thus, they offer no protection against
bots that use the endpoints directly, e.g., using python re-
quests or which replay previously recorded sessions [24, 34].
Our approach and code obfuscation work in tandem, comple-
menting each other. While our approach safeguards against
session replays and API bots, code obfuscation adds an ex-
tra layer of complexity, rendering the extraction of client-
specific encrypted endpoints more challenging. By altering
the endpoints for each client periodically, the effort required
by an attacker can be further increased. It is worth noting
that while our approach was initially designed for accounts,
it is also applicable to services without a login feature.

• We purpose methods to enhance the usability of our ap-
proach for both users and service providers. So, despite
unique URLs, those URLs can still be shared between users
without impacting the efficacy against bots. Further, service
providers do not have to predetermine all of their endpoints
to utilize our approach.

• We implement the approach as a middleware for FastAPI
and the Jinja2 templating engine. The source can be found
here1 as well as simple demonstration in form of a video.

• We evaluate our approach’s performance and organizational
overhead and discuss the additional effort required for at-
tackers to scale bots.

• As an added benefit, our approach can protect against direc-
tory traversal attacks and attacks that rely on guessing or
injecting data into the path or parameters, as our method
renders URLs non-guessable and user-specific.

Note that the primary objective is to increase the effort to scale
bots by preventing a bot to be used on a different account, and
not the creation itself. While our approach alone achieves this, it
heavily benefits from being used together code obfuscation to
make the extraction of client-specific encrypted endpoints more
challenging (cf. Section 5.1). Legitimate bots, security testing, and

1https://github.com/8mas/encrypted-endpoints

interoperability across different services are still possible, e.g., by
providing special API keys after thorough verification.

The remainder of this paper is structured as follows. Section 2
introduces our threat model, specifying the types of bots we aim to
protect against, and describes the attacker model used throughout
this paper. Section 3 outlines the requirements for bot defense and
reviews related work in the field. Section 4 describes our approach
to encrypted endpoints and discusses potential optimizations to
restore functionalities such as link sharing. Section 5 presents our
evaluation of the proposed approach and discusses its effectiveness
in defending against the specified attacker model. It also explores
the limitations of our approach. Section 6 doutlines the require-
ments for code obfuscation techniques that can be integrated with
our method. Finally, Section 7 concludes the paper.

2 THREAT AND ATTACKER MODEL
In our threat model a service is accessed by bots. The service either
cannot or chooses not to depend on more robust user authentica-
tion methods, such as phone verification or presenting personal
identification documents. This decision is grounded in realism, as
authentication processes that introduce friction tend to deter users
from engaging with the service [18]. The service has already im-
plemented account-bound rate limiting, ensuring that actions like
purchases and upvotes are constrained within certain limits per
account. This setup necessitates a logical reason for bot creators to
create multiple bots, each controlling distinct accounts. This sce-
nario is common across various types of websites, including those
in social media, e-commerce, and gaming. However, for websites
that solely provide information, our approach is not applicable.

For example, on most social media platform, content visibility
is influenced by upvotes. Each account is permitted to vote only
once, making it advantageous for bot operators to control multiple
accounts for the purpose of artificially boosting the visibility of
specific content through coordinated upvoting.

2.1 Considered Bots
Our defensemechanisms against bots, specifically targets API-based
bots. Our rationale is that API-based bots are prevalently used,
easily scalable, and consequently represent a substantial threat.
Delving further into the matter:

API-based bots are simpler to develop and maintain because
they interact directly with a service’s endpoints, circumventing
the complexities associated with graphical user interfaces (GUIs).
In contrast to GUI elements that are prone to frequent changes,
API endpoints, particularly those that are versioned (for example,
"/v1/user"), provide a stable interface for automation. This stabil-
ity diminishes the necessity for continual updates in contrast to
bots operating on the UI. However, with current technological ad-
vancements, UI-based bots are expected to become more adaptable
shortly.

Furthermore, API-based bots have the advantage of automated
tools that facilitate the creation of bots by extracting endpoints and
data from service interactions. These tools enable straightforward
session replays [24, 34], making API/endpoint-based bots a more
viable option for our research, which emphasizes efficient and stable
automated interactions.

https://github.com/8mas/encrypted-endpoints

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

API-based bots also require significantly less computational re-
sources compared to their UI-based counterparts, which need to
render graphical interfaces and are tightly bound to the underlying
program and UI. For each instance of a UI-based bot, a separate inter-
face instance is required, leading to escalated resource consumption
and higher scaling costs. This contrast is especially pronounced in
contexts like gaming and mobile applications, where UI-based bots
are resource-intensive, and scaling becomes more costly.

2.2 Attacker Models
We define two attacker profiles:

Endpoints Only (EO) Attacker. : This EO attacker strategy focuses
solely on utilizing service endpoints to develop bots. By recording
network traffic, attackers can use tools such as mitmproxy2swagger
and charles-extractor [24, 34] to extract endpoints and data formats
from the session, facilitating session replay and bot creation with
minimal technical expertise required. This approach bypasses the
need to parse desktop binaries, mobile applications (APKs, IPAs),
or web elements (HTML, CSS, JavaScript), offering a streamlined
method to create efficient bots.

Endpoints and Data Parsing (EP) Attacker. : Contrary to the first
attacker model, this EP attacker involves utilizing service endpoints
and processing and parsing available data. In the context of mobile
and desktop programs, this includes binaries and apps (APKs, IPAs),
which are inherently difficult to parse and often require reverse-
engineering using disassembly and debugging tools. In the context
of the web, this encompasses server responses in formats such as
HTML, XML, and JavaScript. This method is typically adopted for
services that lack a comprehensive API. Direct interaction with
specific endpoints to obtain structured data, such as JSON (e.g.,
"/v1/product/id" providing product prices and availability), is gener-
ally more straightforward and reliable than parsing semi-structured
data like HTML. The latter, often relying on tools such as XPath or
CSS selectors, is more susceptible to errors and complications due
to potential changes in the data’s structure or format [26].

3 REQUIREMENTS AND RELATEDWORK
3.1 Requirements for Bot Defense Approaches
We have identified several requirements for bot defense approaches:

• Transparent to user : The approach should not disrupt the user
experience, thus avoiding time wastage throughmechanisms
such as captchas [1] and preventing loss of revenue due to
additional hurdles in website navigation [18].

• Zero data collection: No data should be collected to differen-
tiate between humans and bots, thereby ensuring privacy.
This includes overt measures like requiring an ID to use a
service, as well as subtler techniques that collect data such
as IP addresses and mouse movements [27].

• Seamlessly integrable: The approach should be seamlessly
integrable into existing services and codebases with minimal
effort.

• Small performance overhead: The approach should have min-
imal impact on the performance of the service, ensuring it
remains usable.

• UI and domain agnostic: The approach should be UI-agnostic
to allow versatile application across different user interfaces.
Additionally, it should be domain-agnostic, suitable for use in
various contexts such as desktop applications, mobile apps,
or HTML-only websites.

• Resistance against attackers (EO, EP): The approach should
effectively counter the described attacker models (EO and
EP).

• Open source: Ideally, the approach should be open source to
ensure developers can adapt it as needed.

3.2 Related Work
We divide the related work into three categories. Proving Human-
ity, Anomaly Detection, and Anti-Analysis. The approach we take
in this paper falls into the Anti-Analysis category. A high-level
overview of how our approach compares to related work is given
in Table 1.

Requirements CA
PT

CH
A
[2
7,
28
]

Br
ew

er
et

al
.[
11
]

Se
e
et

al
.[
32
]

Co
de

ob
fu
sc
at
io
n.

[1
2,
36
,3
9]

U
se
rs

pe
ci
fic

A
PI

ke
ys

Fa
ce
bo

ok
A
nt
i-T

ra
ck
in
g[
3]

O
ur

Sy
st
em

Transparent to users
Zero data collection
Seamlessly integrable
Small performance overhead
UI and domain agnostic
Resistance against attacker (EA)
Resistance against attacker (EDA) 2 2 2

Open source 3 4

partially fulfilled fulfilled
Table 1: Related bot defending techniques.

Proving Humanity. Approaches in this category aim to prove
a user’s humanity directly, for example, through possession or
human knowledge. The strongest proof that a user is a humanwould
be requiring an official government-issued ID. While this would
certainly make it hard to scale bots, it is also a privacy-unfriendly
requirement. Even if users did not care about privacy, it would
disrupt the user experience, directly impacting companies’ revenues
[18]. A very well-known, and at present, the standard way to prove
humanity is CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) [27, 28]. CAPTCHA relies on
problems that are hard to solve for computers and easy for humans,

2Only when coupled with code obfuscation approaches.
3Some implementations like Tigress are available.
4This is more a generic technique than an implementation.

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

such as reading distorted characters or selecting specific images.
This approach, however, has some serve limitations and is becoming
less and less effective. First, CAPTCHA breaks the user experience.
Second, the time wasted to prove humanity is 500 years each day,
alone for CAPTCHA issued by Cloudflare [1]. To deal with this,
there is research to decrease the number of issued challenges to
users, e.g., privacy pass [13]. In addition, for each correctly solved
CAPTCHA, the users receive some tokens. These tokens do not leak
information about the user and can be used to bypass CAPTCHA.
However, the main problem of CAPTCHA is that the number of
problems that are hard to solve for computers and easy to solve
for humans is decreasing because of the advancements in machine
learning [19, 25, 35].

To address the problems of CAPTCHA, there are developments to
attest humanity through cryptographic routines, Trusted Plattform
Modules (TPMs), and Trusted Execution Environments (TEEs). The
idea is that by possessing a rare resource, e.g., security keys [43],
Iphones [20], etc. CAPTCHA no longer has to be solved. Here
it must be ensured that no information about the actual user is
leaked, but also that a simple (virtual) transfer of the resource is not
possible. These approaches [20, 43] are compatible with the pricacy
pass [13] protocol and are designed to avoid displaying CAPTCHA
altogether.

Anomaly Detection. These approaches try to detect bots through
their characteristics, e.g., user-agent or display size and behav-
ior. CAPTCHA providers use these approaches for an initial risk
assessment to decrease the number of CAPTCHA presented to
users [27, 28]. A harder or no CAPTCHA is presented depending
on the calculated score. However, characteristics such as IPs, user
agent, resolution, and cookies are needed to calculate the risk. This
information can fingerprint the system and track users across mul-
tiple websites. In addition, mouse movements and keystrokes allow
the user to be identified, not just the browser or system [5, 33]. This
is a major criticism of current CAPTCHA systems.

Brewer et al. [11] introduce another way that resembles the idea
of honeypots. Every link on a web page is surrounded by fake links
that are not visible to the user. A bot that tries to crawl or scrape the
website will likely visit a fake link and is thus exposed. In contrast
to other anomaly detection approaches, this is very privacy-friendly
and stands out positively due to low false positives.

Last, anomaly detection approaches for bot detection suffer from
one common problem. If a bot behaves exactly like a human user
(characteristics and behavior), distinguishing between humans and
bots is no longer possible. However, forcing a bot to behave like a
human is a great achievement since it increases the cost of creating
undetected bots. Bot writers then need to consider the character-
istics and behaviors of humans on a website, and the written bots
are not as effective as they could be. However, these advanced bots
will not be detectable through anomaly detection alone.

Anti-Analysis. These approaches aim to complicate the creation
of bots and increase the costs associated with extracting informa-
tion, thereby aligning with the objectives of this paper. We describe
the requirements for code obfuscation used in conjunction with
our approach in Section 6.

The primary challenge in anti-analysis engineering lies in quan-
tifying the efficacy of a technique against an undefined attacker

[6, 8, 38]. When an attacker fully controls a device, all anti-analysis
techniques can merely elevate the cost for an attacker to reverse
engineer an application without the possibility of completely pre-
venting it.

In the context of web bots, obfuscation techniques serve to com-
plicate the extraction of essential information required for bot cre-
ation, such as accepted protocols, endpoints, or API keys. Numerous
methods exist both for data extraction from a program and for its
obfuscation.

However, more than obfuscating the location of elements is
required. For many bots, e.g., spambots, only the endpoint and
the data format are needed. Consider Listing 1 website that dis-
plays a URL with GET parameters and a form. Even if the loca-
tion is obfuscated (cf. listing 2), the endpoint (example.com/api,
example.com/api/user) and the parameters (param1, name1) are
always the same. Thus, once known, e.g., through recording the
traffic, they can be used indefinitely, and the bot can be scaled easily.

Listing 1: Unobfuscated HTML
1 <a i d = " l i n k 1 "

h r e f = " example . com / ap i ? param1= h e l l o " >Link1< / a>
2 <form a c t i o n = " example . com / ap i / u s e r " method= " POST " >
3 < inpu t name= " name1 " i d = " i npu t 1 " va l u e = " world " / >
4 < / form>

Listing 2: Obfuscated HTML (IDs, XPath)
1 <form a c t i o n = " example . com / ap i / u s e r " method= " POST " >
2 < inpu t name= " name1 " i d = " random2 " va lue = " world " / >
3 < / form>
4 <a i d = " rand1 "

h r e f = " example . com / ap i ? param1= h e l l o " >Link1< / a>

There are many approaches that address code obfuscation in the
web context. These include academic papers, free-to-use tools [10,
23, 45], and commercial software [21, 22, 29]. Some commercial
solutions offer comprehensive packages that handle all three aspects
at once [21, 29]. While most approaches claim minimal overhead,
they often do not evaluate it.

It is ideal to have an approach where the resource cost of cre-
ating the obfuscation is low, and ideally, each client receives its
own obfuscated version of the website. While some approaches
are non-deterministic, the majority are deterministic, necessitating
an additional randomization step. However, websites can be pre-
obfuscated, and the obfuscated versions can then be distributed to
clients. Most tools are user-friendly and do not require extra con-
figuration for the frontend. Typically, users need only to give their
final HTML, JS, or CSS files as input, which are then obfuscated.

A paper analyzing the top 10K Alexa websites found that less
than 0.4% use obfuscation on JavaScript [30] and 68.8% use mini-
mization. Another paper analyzing the top 100K Alexa websites
found that 0.67% of scripts are obfuscated, but 38% are minimized.
While these percentages are not high, they indicate that code ob-
fuscation is employed on some of the most popular websites.

Vikram et al. [40] address this. They build a tool, NOMAD, to
defend against web bots without breaking the website for human
users. The tool randomizes the Name and ID parameters of HTML
form elements for each session. Thus, forcing the bot to extract the
correct names and IDs for each session. However, this is limited to
only forms and does not apply to (GET) parameters.

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

Wang et al. [41] introduce WebRanz, a novel mechanism for cir-
cumventing ad-blockers by employing randomization techniques
to mutate HTML elements and their attributes without affecting
the visual appearance or functionality of web pages. This approach
invalidates the pre-defined patterns utilized by ad-blockers, thereby
enabling content publishers to deliver advertisements effectively.
WebRanz also provides a defense against web bots that manipulate
DOM objects using similar pattern-matching techniques. The au-
thors evaluate the system on 221 Alexa top web pages and eight
bot scripts, demonstrating that WebRanz successfully evades ad-
blockers and mitigates the impact of bot scripts with minimal over-
head. It is a promising candidate to use in conjunction with our
approach to counter the Endpoint and Data Parsing Attacker.

See et al. [32] follow a similar path. Their approach assigns a
new application protocol for every user. Thus all protocol messages
are unique, and bots cannot be scaled. The main problem of this
work is that it is not easily usable for HTTP, and to be lightweight
needs much fine-tuning.

The examples provided thus far have predominantly pertained to
the web context. However, the same principles apply to binary ob-
fuscation techniques. Examples of sophisticated software protection
systems include Tigress [12], VMProtect [36], and Themida [39].
These systems are directly applied to the source code of an applica-
tion, yielding a protected executable that utilizes a range of anti-
reverse engineering and obfuscation techniques, thus complicating
the extraction of information such as endpoints from compiled
binary. However, despite the sophistication of these systems, they
struggle to effectively obfuscate endpoints. This limitation arises
because data transmission to these endpoints can be observed, for
example, by utilizing a system-wide proxy. Consequently, bots can
be scaled with relative ease once again.

User-specific API keys that are located in the client application
and CSRF tokens might be used to impede bot creation, but original
serve distinct purposes. For example, API keys may be used for
identifying and authenticating a user across sessions, providing a
persistent form of security, whereas CSRF tokens are designed to
protect against cross-site request forgery attacks by ensuring that
each request to a server is accompanied by a unique token, verify-
ing the request’s legitimacy. These mechanisms can be considered
predecessors or foundational elements for our technique aimed at
impeding the scaling of bots. Essentially, our method applies the
concept of a CSRF token across a broader domain, compelling bot
creators to extract it to make server-accepted requests. API keys
in applications can offer similar functionalities by requireing an
attacker to first reverse engineer the API key to authenticate cus-
tom requests. Our design, in contrast, is more versatile than CSRF
tokens or API keys. It does not require an execution mechanism
(like necessary for API keys to authenticate data), nor is it limited
to HTTP. Further, it can operate statelessly. The only necessity is an
endpoint identifier, which could include, but is not limited to, URLs.
Our methodology and API keys are complementary, not exclusive.
Integrating them can further obscure not only the endpoint but
also the transmitted data, thus forming a comprehensive defense
against direct and indirect attacks.

Facebook is using encrypted URLs to combat URL stripping [3].
Every parameter of a URL is encrypted and signed. Thus, it is no
longer possible to drop tracking parameters without invalidating

the whole link. As this technique is most similar to our approach,
we provide a side by side comparison in Table 2.

Feature Facebook’s Imple-
mentation

Our Implementation

Goal Prevent addons like
Clear URL from drop-
ping certain tracking
parameters, as they
break the link.

Prevent scaling of bots
by requiring them to
extract URLs from the
source or binary.

Method Encrypt and sign pa-
rameters using (likely)
a general key, not
client-specific.

Encrypt and sign both
path and parameters
using a client-specific
key.

Security – Prevents techniques
like directory travers-
ing, guessing paths,
local file inclusion.

Availability – Free and open source.
Table 2: Comparison of URL Protection Strategies

4 ENCRYPTED ENDPOINTS
The core idea to limit the scalability of endpoint-based bots is the
usage of encrypted endpoints. Every client (user), e.g., distinguished
by session cookie or IP, receives a version of the same website
with unique URL-Paths and parameters. Paths and parameters are
encrypted, signed, and only valid for one client. If a bot is created,
it cannot be duplicated easily, as the URLs are only valid for the
particular client instance and, i.e., the bot. To create multiple bots,
the bot creator is forced to extract the customURLs from thewebsite.
This effectively prevents bots that rely on the simple replay of
data [24, 34]. While extraction of URLs is trivial in normal cases,
this can be made considerably more difficult by using obfuscation
approaches from related work like [11, 14, 40]. Since URL paths and
parameters are signed, any modification to them can be detected. A
live demonstration of this concept has been implemented in a web
application5. It is important to note that while the example provided
is a web app, for ease of sharing and demonstration purposes, the
underlying principle is equally applicable to both computer and
mobile applications.

4.1 Basic Approach
Figure 1 outlines the proposed methodology. The encrypted end-
pointsmiddleware, which can be integratedwith the server, receives
requests from clients. The middleware generates a secure client key
from the client identifier (e.g., a user ID) as detailed in Section 4.3.1.
We assume that this identifier is non-forgeable.

In a typical scenario as seen in Figure 1a, the client sends a
request to an encrypted endpoint, such as a URL, accompanied by its
client identifier. The middleware, upon receiving this information,
generates a client-specific key to decrypt the URL. If decryption is
successful, the URL is forwarded to the backend server, which then
retrieves the response and sends it back through the middleware
5https://github.com/8mas/encrypted-endpoints

https://github.com/8mas/encrypted-endpoints

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

Client-A Middleware Backend
example.com/{v1/login}ka

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

example.com/v1/login

response

(a) Encrypted Endpoint Usage Backend Only

Client-A Middleware Backend

example.com/
Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a

example.com/

response en
cr

yp
t U

LR
s

ka

(b) Encrypted Endpoint Usage in Context of Webpages and HTTP

Figure 1: Overview of Encrypted Endpoint Usages

to the client. It is important to note that clients are incapable of
generating valid URLs independently; instead, the middleware and
backend collaborate to create and distribute these URLs to the
client, as illustrated in Figure 1b. In this process, the initial request
from a client is directed to an unencrypted endpoint, for instance,
example.com/. The middleware subsequently generates the client
key and relays the request to the backend. The backend server then
retrieves the resources and encrypts all URLs within these resources
using client-specific encrypted endpoints.

The encrypted response is then transmitted back to the client,
enabling the use of these encrypted endpoints as shown in Figure 1a.
Navigation on the client’s side proceeds normally, with additional
URL requests being validated and decrypted by the middleware.
For applications such as desktop and mobile apps, these endpoints
can be pre-populated during compilation or installation, enhancing
the security and functionality of the system.

Figure 2 illustrates the efficacy of encrypted endpoints in miti-
gating bot activities and preventing accidental exposure of sensitive
files. In Figure 2a, Client-B attempts to access a URL specifically
generated by the server for Client-A. As part of this process, Client-
B sends its identifier, prompting the middleware to generate the
client-specific key 𝑘𝑏 and attempt to decrypt the accessed URL.
This attempt fails due to a Message Authentication Code (MAC)
mismatch, as the URL was encrypted using 𝑘𝑎 , resulting in an er-
ror response. This mechanism ensures that bots configured for
one account cannot be repurposed for another, enhancing security.
However, it is important to acknowledge the unintended conse-
quence of inhibiting link sharing, a potentially undesirable outcome.
We address this issue in Section 4.3.3.

Figure 2b depicts a scenario where a client attempts to access
a URL not issued by the server, such as during an attack aimed
at discovering sensitive files through techniques like environment
variable file scanning or directory traversal. The principle remains
consistent with the previous example, where the middleware gener-
ates 𝑘𝑎 based on the client’s provided identifier. Since the accessed
URL lacks a valid MAC, an error is returned, and access to the
resource is denied. This feature of our approach effectively acts as a

URL whitelist, allowing access only to URLs returned by the server
to the client. Consequently, this strategy significantly reduces the
risk of resource guessing, scanning for sensitive files, and mitigates
certain attack vectors such as directory traversal and SQL injection
in specific contexts (refer to Section 5.3).

This construction compels bot creators to dynamically search
for the current endpoints, representing a significant step forward
in impeding bots that rely on hardcoded or memorized endpoints
[24, 34]. Nevertheless, extracting endpoints from sources such as
HTML, binary code, software, Java, applications, or similar materi-
als is not inherently challenging. Therefore, our approach gains a
considerable advantage by incorporating obfuscation techniques
that increase the difficulty of identifying specific endpoints.

It is essential to recognize that relying solely on code obfuscation
is inadequate for deterring bots. Automated tools, as mentioned
in [24, 34], can efficiently extract all necessary endpoints and data
from a recorded session, facilitating the easy creation of session
replays and bots.

4.2 Formal Model
An application, e.g., a website W contains a list of URLs, 𝑈 =

{𝑢1, ..., 𝑢𝑛}. We filter URLs from this list, that either cannot be en-
crypted, e.g., if the resource is located on a third party location or
should not be encrypted, e.g., if it is a public shared URL (cf. Section
4.3.3). While normally URLs contain more, e.g., the scheme, for
simplicity, our URLs only contain a path p and a set of parameters
a. Any operation on a URL 𝑢𝑖 is on the concatenated string of path
and parameters, i.e., 𝑢𝑖 = 𝑝𝑖 | |𝑎𝑖 . A client 𝑐 has a unique identifier
𝐼𝑐 . The server has a main key 𝑘𝑚 . Using a key derivation function
KDF (𝑘𝑚 , 𝐼𝑐), the server generates a client key 𝑘𝑐 . If identifiers are
reused between clients, e.g., IP addresses, a nonce that is regularly
changed should also be included in the KDF. The client key encrypts
and authenticates each URL 𝑢 ∈ 𝑈 of a website using authenticated
encryption (AE) like AES-GCM, which return the encrypted mes-
sage 𝑒 as well as a Message-Authentication-Code (MAC) 𝑡𝑒 . The
URL line must not leak anything about the URL’s semantics. Thus,

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy
Ac

ce
ss

 e
nd

po
in

t
of

 a
no

th
er

 c
lie

nt
.

e.
g.

, B
ot

 is
 u

se
d

on
 a

no
th

er
 a

cc
ou

nt
Client-B Middleware

example.com/{v1/login}ka

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

b
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC
 a

s
U

R
L

ha
s

M
AC

 o
f k

a
an

d
no

t k
b

error

Identifier Ib

(a) Invalid URL for Client B because the URL was generated for Client A,
rendering the MAC invalid.

Ac
ce

ss
 m

od
ifi

ed
re

so
ur

ce

Client-A Middleware
example.com/.env

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC

error

(b) Invalid URL due to the client’s direct access attempt on a URL not
issued by the server.

Figure 2: Overview of Potential Errors and the Effectiveness of Encrypted Endpoints in Enhancing Security.

a MAC alone is not enough. Since URLs might be differentiable by
their length, padding can be used to increase the length of URLs.

𝑢′ = ⟨𝑒, 𝑡𝑒 ⟩ = AE𝑘𝑐 (𝑢) (1)

In this equation, 𝑢′ is the newly constructed URL that replaces
URL 𝑢. The encrypted path and parameters are 𝑒 , and 𝑡𝑒 is the mes-
sage authentication code of 𝑒 . Both are constructed using the client
key 𝑘𝑐 , only known by the middleware. The client then receives a
version of the web page𝑊 ′ where every URL 𝑢𝑖 ∈ 𝑈 is replaced
with 𝑢′

𝑖
. In the subsequent figures, we employ the shorthand nota-

tion {𝑢𝑟𝑙}𝑘𝑒𝑦 to denote authenticated encryption of URLs.
This construction is stateless, i.e., the middleware does not need

to save any client keys as they are derived from the client identifier
sent with every request. Note that encrypting URLs is necessary,
and a MAC is not sufficient because URLs can be identified by their
paths and parameters (cf. Section 4.3.1 and Section 5.1). A stateful
construction can save CPU time but uses space as compensation,
i.e., each custom URL must be stored for each client.

As long as the client identifier is not easy to share and secure
cryptographic primitives are used, these constructions allow URLs
to be used only by the respective client. No URLs can be created
that the server did not create itself.

4.3 Using Encrypted Endpoints
This section describes how encrypted endpoints could be used pro-
ductively. The choice of the client identifier, possible error handling,
and possible optimizations are discussed.

4.3.1 Choosing the Client Identifier. We operate within a desig-
nated threat model, where mechanisms such as rate limiting are
implemented (cf. Section 2). The client identifier, depicted in Figure
1 serves as the foundation for generating the corresponding client
key, a crucial element utilized in URL encryption. To preempt du-
plication, the client identifier must be associated with a resource
that proves challenging to replicate or that can be subject of rate
limiting. For example, one can achieve this by constraining account
activities and limiting actions based on User IDs, IP addresses or

browser fingerprints. This safeguard is necessary since the URLs
generated will be identical for a given client identifier.

There are several ways to choose client identifiers or even to
combine different factors. Here, we will discuss the advantages and
disadvantages of the identifiers User ID, IP address and browser
fingerprint. However, combining different identifiers can improve
the robustness of the system.
Session Cookie / User ID In scenarios where the service incor-

porates encrypted endpoints alongside a login mechanism,
a user ID or session cookie is used to identify a client. This
setup ensures that URLs are customized for individual ac-
counts, thereby anchoring bots to specific accounts.
Note that although duplicating a session cookie is feasible, this
offers no advantage to the attacker. The subsequent bot would
be confined to the same account without any incremental
capabilities. For example, it could neither cast additional
upvotes on the same post on a social media platform nor
purchase more products than its predecessor. Despite the po-
tential feasibility of generating valid session cookies, perhaps
through automated registration, the differentiation provided
by unique user IDs mandates that bots be specifically tai-
lored to their respective accounts.However, is its reliance on
a login feature, which might not be applicable for all services.
In such cases, alternative identifiers should be considered.

IP Address The IP address constitutes a practical identifier for a
broad range of applications, automatically accompanying
each request. To prevent IP address spoofing, this identi-
fication method relies on the exchange of multiple pack-
ets, such as those involved in a full TCP handshake, which
helps deter trivial alterations of the source IP. However, the
use of IP addresses as client identifiers presents challenges,
such as the invalidation of all URLs upon an IP address
change—occurring when a user switches from mobile data
to Wi-Fi—due to the resultant alteration in the derived client
key. Strategies to address these concerns are discussed in
Section 4.3.3. It is crucial to enforce a per-IP rate limit to
thwart the repeated initiation of a single bot from the same
IP. Additionally, the coexistence of multiple devices behind

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

NAT, sharing an IP address, necessitates the combination of
IP and port for a more effective client identifier construction.

Device/Browser Fingerprint Utilizing a device or browser fin-
gerprint generated on the client side serves as an effective
method for identifying users accessing the service through
an app or browser. This technique surpasses the limitations
of easily spoofable attributes, such as browser version and
installed fonts, by incorporating at least one distinctive and
difficult-to-replicate feature. For instance, leveraging a can-
vas fingerprint allows for the unique identification of devices
based on their graphics processing capabilities [31]. The pri-
mary challenge with this method is the reliance on executing
client-side code, such as JavaScript, to obtain the fingerprint.
This necessitymight restrict its applicability in environments
where client-side code execution is disabled.

While numerous techniques exist for creating an identifier, the
optimal solution is undoubtedly the use of a user/client/account
ID, generated after login. This method is inherently unique to each
client, thereby circumventing issues associated with IP-based iden-
tifiers, which may change when switching networks.

For services not requiring authentication, a combination of the
non-forgeable IP address and browser fingerprint is potentially the
most effective approach. This is because, even if the IP address
changes, it does not necessarily disrupt the user’s session.

In the subsequent sections, we will focus on addressing chal-
lenges related to URL sharing and session resumption.

4.3.2 Partial Encrypted Endpoints. Our methodology is optimally
applied to endpoints that are fully known beforehand by the server.
However, this is not always feasible. For instance, search fields
that accept arbitrary user input and incorporate it into a parameter
present a challenge. In such cases, only the parts of the URL known
to the server in advance can be encrypted, while the dynamic, user-
controlled portion must be appended. This approach necessitates
distinguishing between encrypted and unencrypted parts, which
can be achieved, for example, by using delimiters or length fields.

If the application cannot modify itself at runtime, such as HTML
without JavaScript, and defense against the EP attacker is required,
no static part of the URL should remain unencrypted. This could
be a vector for differentiating URLs. Furthermore, URLs should
be padded to equal or random lengths so that an attacker cannot
differentiate them by length.

For applications that can modify themselves at runtime, and
depending on the obfuscation used, this might not be a major prob-
lem, as the URL can be split into multiple locations and the parts
themselves can be obfuscated as well.

When utilizing partially encrypted endpoints, developers must
specify in advance which parts are always encrypted and which
may remain unencrypted. Failure to do so could enable an attacker
to supply unencrypted endpoints and attempt to deduce and use
them.

4.3.3 Shared URLs and Session Resumption. Two issues need to be
addressed for practical use: URL sharing and session resumption.
URL sharing is a widespread practice on the Internet for sharing
resources. An online store, for example, relies on customers being
able to send product links to each other. Further, session resumption,

e.g., switching between devices or networks, is crucial for a smooth
user experience.

URL Sharing. With the current design, URL sharing between
users is only possible if they have the same client identifier, which
should be avoided. The same is true for shared URLs between
services, e.g., a online shop that is not using our approach linking
to a payment provider that uses encrypted URLs. If the user is
already logged in, the link will break.

The service using encrypted URLs could retain certain URLs or
operations (e.g., HTTP methods like POST, GET, DELETE) to be
used without our approach, i.e., as normal URLs. This could apply
to URLs or URL paths that need to be public, such as incoming links
that are used by unknown third parties, e.g., the payment site of a
payment provider. The drawback of this method is that bots could
operate on those URLs normally, so it should be used only when
necessary. Note that after accessing the service using the normal
URL, all subsequent URLs are encrypted again. Thus, our approach
is only diminished for one URL operation. This requires the service
to identify URLs and operations that should be public and to make
them known to the middleware.

Another approach is to allow URLs to be accessed by a different
user while restricting the access to read-only, i.e., only sharing
URLs that do not alter state by restricting the operations on the
URLs. This requires identifying URLs and operations that do not
modify state. If HTTP is used, this should be straightforward, as
the method has properties like safe, which indicate that they should
not alter state. This is defined in the HTTP RFCs[16, 17]; however,
it is currently treated as a convention and may be violated by
developers. Consequently, safe methods like GET cannot always be
relied upon to be safe. This necessitates operators verifying whether
their application adheres to the standard. If not, the first method
must be used. Thus this approach as well requires the service to
identify URLs and operations that should be public and to make
them known to the middleware.

This makes URL sharing between users possible, it does not affect
the defense against bots. Multiple bots can now access the same
URL without requiring the same client identifier. However, this
applies only to „read” access. Whether one or more bots have read
access to the same resource is mainly inconsequential and offers no
additional value for the bot creator. In edge cases, such as displaying
the availability of a product, rate limiting could be circumvented.
In contrast, multiple bots can benefit the bot creator for operations
that alter the state, such as sending spam or purchasing products.

For sharing encrypted URLs, the approaches the middleware
needs to be able to process the request, thus the URL needs to
be decrypted. In a stateless construction, the client key can be
appended to the URL, encrypted, and authenticated with the server
key. Thus for a read-only operation, the URL can be decrypted by
the middleware by decrypting the client key first.

𝑢′ = ⟨𝑒, 𝑡𝑒 , 𝑔, 𝑡𝑔⟩
⟨𝑔, 𝑡𝑔⟩ = 𝐴𝐸𝑘𝑚 (𝑘𝑐)

(2)

New to Equation 1 are the encrypted client key 𝑔 and the ac-
companying MAC tag 𝑡𝑔 . Additionally, the authenticated encrypted

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

client key 𝑘𝑐 is constructed using the secret key 𝑘𝑚 , which is known
only to the middleware.

In deployment, shared URLs can be identified by adding an iden-
tifier to it, e.g., between the client encrypted URL and the client
key ⟨𝑒, 𝑡𝑒 , delimiter, 𝑔, 𝑡𝑔⟩. It would check if it is a state-modifying
request and 𝑔 is not forged. Then it can decrypt 𝑔 to obtain 𝑘𝑐 . Next,
it needs to verify 𝑒, 𝑡𝑔 and can obtain the URL. In theory, a delimiter
is not necessary if 𝑔, 𝑡𝑔 are of fixed size, but that would force the
backend to treat every URL first as a shared URL.

Session Resumption. This issue arises only when an identifier
that is prone to change is selected, such as relying solely on the IP
address. For instance, a user’s IP can change when transitioning
from a mobile network to a WiFi network, leading to a scenario
where all current URLs become invalid. This is not conducive to a
user-friendly experience.

In cases where utilizing a more stable client identifier is not
feasible, one straightforward solution is to enable URL sharing.
This allows users to access shareable URLs even if their identifier
changes.

A stateful approach to addressing this challenge involves the
use of one-time tokens, which can circumvent URL verification
once. These tokens could be stored as cookies in HTTP contexts.
However, it is crucial that the token is valid only for the respective
user, meaning it should bypass URL verification exclusively for
that user. This can be achieved by storing the client key in an
encrypted and authenticated form using the server key, as outlined
in a manner similar to Equation 2.

When a client initiates a request from a new IP, resulting in a
changed derived client key, the token comes into play. The process
begins with the verification and decryption of the token, followed
by the verification and decryption of the requested URL. It is im-
portant to note that this token is inapplicable to URLs belonging
to a different client, as they are authenticated with a distinct client
key. Successful access to the new URL leads to the construction of
all subsequent URLs with the new client key.

Employing this method for session resumption does not under-
mine defenses against bots, as it does not offer them any advantage.
While a bot may transfer the URL to another bot, accessing the
resource is an action the original bot could have executed, main-
taining the integrity of the system’s bot defense mechanisms.

4.4 Optimisations
4.4.1 Validity period for URLs. In the current design, URLs for a
client remain the same if the client identifier does not change. This
means that when a client-specific bot is created, it does not have
to re-extract the URLs for that client. The client key can be made
expirable to increase the effort required to maintain bots. In a state-
less design, client keys 𝑘𝑐 can be regenerated at specified intervals
𝑡 , or for each application update, by incorporating a nonce into the
derivation of the client key, which would always change, KDF (𝑀, 𝐼𝑐 ,

nonce𝑡). In a distributed infrastructure, e.g., using anycast or a load
balancer, to avoid syncing the nonce, one could derive the nonce
using a deterministic pseudorandom function. Due to our method
of session resumption (Section 4.3.3), this does not result in any
loss of user experience. Furthermore, any previously shared URLs
do not expire.

4.4.2 Minimizing the Overhead. Several optimizations can be made
to reduce the overhead or increase the cost of maintaining bots.

Space-Time Tradeoff The current design is stateless and regener-
ates client keys and URLs on the fly, which might result in increased
latency due to the frequent execution of CPU-intensive operations.
One optimization is to introduce a state which stores client keys or
URLs. Then, if a client requests a URL, the backend only needs to
check whether the URL is known. No cryptographic operation is
required. The URLs can be cached in a database or memory. How-
ever, storing all URLs for each client is storage-intensive. Another
less extreme time-space tradeoff is to store the client key, so it does
not have to be regenerated for each request. This will decrease
the CPU-intensive operations and decrease the latency. We will
evaluate these methods in Section 5.2.

Risk Assesment A strong resource optimization is the use of
risk assessment approaches. The generation of client-specific URLs
is computationally more expensive. By using risk assessment ap-
proaches [37, 42], this overhead can be reduced for the server and
legitimate clients. Simple examples of such risk assessments include
identifying high-volume IPs or clients that have been connected to
the service for an unusually long time or checking if the client is
an automated browser like Selenium or Puppeteer. This way, the
URLs can be generated only for clients that are flagged as high-risk,
while the rest of the clients will be served directly from the server
or a Content Delivery Network (CDN).

5 EVALUATION
In this section, we summarize the results of our evaluation. The
focus is to determine the approach’s overhead and compare it to
similar obfuscation techniques. In detail, we answer the following
research questions:
RQ1: To what extent does our approach restrict the scalability of

bots, and how does it perform in comparison with alternative
bot detection or mitigation strategies?

RQ2: What is the computational and operational overhead associ-
ated with employing encrypted endpoints?

RQ3: Against which specific attacks do encrypted endpoints pro-
vide protection?

We implement our approach as middleware in FastAPI, ensur-
ing seamless integration by simply incorporating the middleware
into the backend. Our implementation extends beyond the back-
end, offering support for rendering via Jinja2. This enables the
straightforward inclusion of webpages, encompassing HTML and
JavaScript, directly out of the box. Furthermore, we have also im-
plemented features for partially encrypted endpoints, URL sharing
and session resumption. These functionalities utilize authenticated
encryption, specifically AESSIV, to maintain security and integrity.

For transparency and accessibility, we will release our imple-
mentation open-source on GitHu6

5.1 RQ1: Security Discussion
In this section, we delve into the security ramifications of our pro-
posed methodology, specifically crafted to curtail the scalability of
bot operations. Unfortunately, directly quantifying the effectiveness

6https://github.com/8mas/encrypted-endpoints

https://github.com/8mas/encrypted-endpoints

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

of our strategy in thwarting bot proliferation presents a consider-
able challenge. This difficulty primarily stems from the inherent
complexity in measuring the success rates of bots, as accurately
distinguishing between legitimate and automated requests would
essentially address the issue at hand. Moreover, we do not have
direct access to popular web services that are frequently targeted
by bot activities. Therefore, we opt for an analytical comparison,
evaluating how our approach impedes the deployment of common
bot creation techniques and attacker strategies, as outlined in our
threat model detailed in Section 2.

Additionally, we conduct a comparative analysis between our
approach and alternative bot mitigation strategies. In particular, we
focus on code obfuscation due to its closely related nature.

5.1.1 Protection Against Scaling of Bots. A bot that scales is usable
for other clients and accounts without being adapted to them be-
forehand. Exceptions are credentials or IDs, such as a username,
password, or session token, which are needed to use the service.

As for the defense, we consider the following obfuscation ap-
proaches:
Code obfuscation: The client code (e.g., HTML, Binary, Android

App) is obfuscated using, for example, techniques from re-
lated work [12, 41]. WWe describe the requirements for a
suitable code obfuscation to be used in conjunction with our
approach in Section 6.

Encrypted endpoints: The obfuscation approach described in
this paper. Each request is on an encrypted URL.

Attacker: Endpoints Only. Code obfuscation cannot stop this at-
tacker because the code is completely ignored. This attacker exam-
ines in which order to which endpoint what was sent and repeats
the session. There are simple-to-use, automated tools that facilitate
this [24, 34].

Encrypted endpoints stop this attacker completely. While the
attacker can build a bot that works for their client, i.e., with their
client identifier, the bot does not function for a different client.
Furthermore, since this attacker cannot extract endpoints from the
client-side application, the bot cannot be scaled. The attacker can
also not predict or generate new valid URLs if a secure authenticated
encryption method is used and correctly implemented.

Attacker: Endpoints and Data Parsing. Code obfuscation alone
fails to offer any significant protection, as the endpoint-only at-
tacker represents a specific subset of adversaries who can employ
the same techniques for bypassing such measures. Similarly, en-
crypted endpoints, in isolation, do not guarantee resilience. Attack-
ers might extract endpoints from client-side source code, such as
Java classes in Android applications, by identifying the <a> tag’s
ID or XPath in HTML documents or using disassemblers for binary
programs.

However, the combined application of code obfuscation and
encrypted endpoints introduces a robust layer of protection. En-
crypted endpoints specifically counteract the weak-points inherent
in code obfuscation, by preventing straightforward access to the
URLs by recording the traffic. Concurrently, code obfuscation com-
plicates the attacker’s ability to pinpoint and exploit individual
URLs, thereby safeguarding against direct attacks on encrypted
endpoints. It is crucial to ensure that endpoints do not inadvertently

disclose information that could undermine this defense, for example,
by adopting consistent encryption practices across URLs. Obfusca-
tion becomes ineffective if URLs can be distinguished through their
paths.

To augment this security strategy, we advocate for the use of
advanced obfuscation techniques, akin to those described in [11],
which can thwart brute-force attacks. Such attacks involve sys-
tematically probing all extracted URLs to identify the correct one
through trial and error.

Direct attacks on encrypted endpoints, without compromising
cryptographically secure methods, are implausible. Thus, attackers
are compelled to extract URLs, with the complexity of this process
being contingent upon the sophistication of the employed HTML
obfuscation technique. Regularly updating the endpoints for each
client can significantly escalate the effort and resources required
for an attacker to maintain their offensive capabilities.

5.1.2 Encrypted Endpoints Compared to Other Approaches. Our ap-
proach does not claim to replace other approaches. On the contrary,
it can and should be applied in addition. All following approaches
are considered in the context of web bots and their scaling.

Code Obfuscation. The limitations of code obfuscation strategies
have been discussed previously, both in the preceding section and
in Section 3.2. These techniques enhance the difficulty of extracting
specific data from client-side sources, such as from Java Classes
or HTML, for instance, by employing XPath or CSS selectors (re-
fer to Section 3.2). This increased complexity presents substantial
obstacles for the development of bots that depend on information
derived from the web, such as detecting product availability.

As described in Section 5.1.1, obfuscation methods fall short in
mitigating the threats posed by API bots or tactics that involve
replaying previously recorded sessions [24, 34]. Likewise, similar
to our proposed model, they offer no defense against UI-based
bots. However, encrypted endpoints effectively counter session
replay attacks and escalate the difficulty for API bot operations.
Although our methodology may be bypassed by parsing request
responses to acquire currently valid endpoints, the integration of
code obfuscation techniques significantly impedes the extraction of
such information, including endpoints. This synergy underscores
the advantage of combining our approach with code obfuscation
methods.

User-Specific Client-Side API Keys. As discussed in Section 3.2,
employing user-specific client-side API keys and CSRF tokens for
user authentication and request validation marks preliminary mea-
sures against bot proliferation. Our strategy enhances these mech-
anisms, extending their application to comprehensively obstruct
bot scalability through the mandatory retrieval and utilization of
valid tokens for server requests.

CAPTCHAs. CAPTCHAs are another kind of defense. They are
designed to confirm that a client is a human by their knowledge or
ability to perform tasks. This means that they are an active chal-
lenge, which is counterproductive to gaining services [18], and
wastes time [1]. Our approach does not hinder regular users, but it
presents difficulties for those attempting to create or scale multiple
bots. The difficulties arise that session replaying tools are rendered
useless and force the extraction of client/account-specific encrypted

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

endpoints. The use of code obfuscation techniques further compli-
cates this extraction process.

Bot Detection and Risk Assesment. These approaches detect bots
or gauge a client’s likelihood of being a bot, leading to allowance,
blocking, or CAPTCHA challenges. They aim to block bots without
overusing CAPTCHAs, avoiding user frustration and revenue loss.
Our approach does not differentiate bots. A possible combination
with these approaches would be to provide only clients that are
likely to be bots with encrypted endpoints and leave all others
without.

Facebooks Encrypted URLs. As outlined in Section 3.2, Facebook’s
deployment of encrypted URLs primarily aims to prevent URL strip-
ping, rather than deterring bot activities [3]. By encrypting and
signing every URL parameter, the integrity of tracking parameters
is preserved, thwarting attempts to remove them without com-
promising the link’s validity. This method, while not designed for
bot mitigation, shares similarities with our approach, prompting a
detailed comparison in Table 2.

5.2 RQ2: Overhead
5.2.1 Ease of Integration. Integrating the proposed approach into
a backend system is straightforward, facilitating the redirection of
all requests through our middleware (cf. Listing 3). This middle-
ware verifies the legitimacy of each request, offering configuration
options such as custom identifier selection and support for par-
tial URLs. For partially encrypted URLs, a custom validator must
be written to check whether a partially encrypted URL is correct.
Specifically, it must ensure that the dynamic, user-controlled part is
valid so that the user cannot include more than necessary, such as
extra parameters or paths. Load balancing and distributed deploy-
ment should function normally and seamlessly, as long as the client
ID is deterministic, and the key derivation function (KDF) used to
derive the client key is consistent, given that the implementation is
stateless.
1 app . add_middleware (
2 m idd l ewa r e _ c l a s s =EncryptedEndpo in t sMidd leware ,
3 main_key=b " some_key ")

Listing 3: Adding EncryptedEndpointsMiddleware to FastAPI

For the frontend, support is extended to Jinja2, enabling the
invocation of an encryption function within our framework. This
functionality is not confined to HTML but is also applicable to
JavaScript tags and files (cf. Listing 4 and Listing 5).
1 Templa teResponse (" s t a r t _ p a g e . html " , { " r e q u e s t " :

r e q u e s t })

Listing 4: Rendering a Template Response in FastAPI

1 < ! −− Encrypt URL to r e s o u r c e s −−>
2 < s c r i p t s r c = " { { e n c r yp t _v a l u e (' / t emp l a t e s / s c r i p t s . j s ' ,

r e q u e s t) } } " >< / s c r i p t >
3 < ! −− Encrypt URLs −−>
4 < i c l a s s = " logout − i c on "

o n c l i c k = " l o c a t i o n . h r e f = ' { { e n c r yp t _v a l u e (' / l o gou t / ' ,
r e q u e s t) } } ' " >< / i >

5 < ! −− In J a v a S c r i p t −−>
6 < s c r i p t >
7 f e t c h (' { { e n c r yp t _v a l u e (" / p o s t s / " , r e q u e s t) } } ')

8 < / s c r i p t >

Listing 5: Using Encrypted URLs in the Frontend

For binaries and applications, multiple integration methods ex-
ist. The simplest is to compile the binary with user-specific end-
points embedded. Alternatively, it is feasible to dynamically inject
the endpoints into the application at startup. In this scenario, the
application contacts a server, which then provides all necessary
endpoints to the client. This necessitates that this information is
obfuscated as well. For example, instead of transmitting the text
form of endpoints, the endpoints could be embedded in a library,
or the URLs could be transmitted encrypted and integrated into the
main package within a secure enclave, such as Intel SGX.

5.2.2 URL Stretch. It is crucial to be aware of the limitations that
various platforms impose on the length of URLs. Although the
HTTP/1.1 specification RFC 2616 [15] does not define a maximum
URL length, practical constraints are enforced by web browsers,
for example, a limit of 2MB in Chromium7. Our experiments indi-
cate that, as of the latest version in April 2024, all major desktop
browsers (Firefox, Chrome, Edge, Safari), as well as mobile browsers
(Chrome, Firefox, Safari), support URLs exceeding 20,000 characters.

Several factors influence the final size (𝐿𝑓 𝑖𝑛𝑎𝑙) of encrypted URLs,
depending on the implementation specifics. The following holds
for our implementation. These factors include padding (𝑂𝑝𝑎𝑑𝑑𝑖𝑛𝑔)
to reach the block size, which might require an additional 128 bits,
and the addition of a MAC (𝑂𝑚𝑎𝑐), contributing another 128 bits.
Our implementation incorporates separators to support partially
encrypted URLs due to their dynamic nature, adding an overhead
of 2 bytes (𝑂𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠). The overhead per encrypted URL segment,
denoted by 𝑛blocks, typically comprises only one segment, meaning
that the entire URL is encrypted. Moreover, the transformation
of encrypted data using base64 encoding typically increases the
size by approximately 33% as it encodes every 3 bytes into 4 bytes
(𝑂𝑏𝑎𝑠𝑒64).

Given these considerations, the formula for calculating the length
in bytes of data post-encryption can be expressed as follows:

𝐿final = 𝐿data ·𝑂base64 + 𝑛blocks · (𝑂padding +𝑂mac +𝑂separators)

𝐿final = 𝐿data · 1.33 + 𝑛blocks · (16 + 16 + 2)
Given the length expansion, current browser limits and consider-

ing typical URL lengths, the length expansion from encryption does
not appear to be problematic. Should one approach these limits,
exploring text compression methods could offer a viable solution.

5.2.3 Runtime Performance. Table 5presents the latency results ob-
tained within a local network environment using a test application
we developed. The application returns a simple HTML page with a
configurable number of embedded links. The baseline is the web
application without our approach of encrypted endpoints, utilizing
AES-GCM for authenticated encryption. It is worth noting that the
processor in use is equipped with AES-NI [4]. The terminologies
used in the table are defined as follows. ENC indicates a scenario
where encrypted URLs are utilized, with the client key being dynam-
ically derived for each request, thus eliminating the requirement
7https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_
display_guidelines/url_display_guidelines.md

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_display_guidelines/url_display_guidelines.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_display_guidelines/url_display_guidelines.md

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

for the server to maintain state. S-Key denotes a method similar
to ENC, wherein the client key is cached on the server, adopting
a stateful approach to enhance performance by balancing storage
space against CPU time. S-URLs employs a strategy akin to the
S-Key method, with the encrypted URLs being cached on the server
to avoid the need for recalculating or re-encrypting identical URLs.

The results from the first table highlight that caching the client
key or the accessed URLs on the server, thereby maintaining a
stateful approach (S-Key), reduces latency, though the overall run-
time overhead remains minimal across all methods tested. Ideally,
caching client keys temporarily, along with frequently accessed
(hot) URLs, should be implemented to minimize latency.

ENC S-Key S-URLs

Latency Increase +0.0311ms +0.0199ms +0.0016ms
Table 3: Impact on backend server response times due to
the handling (decryption) of encrypted URLs, measured in
milliseconds. Profiling was conducted internally, avoiding
end-to-endmeasurements due to their millisecond-level vari-
ability, which could compromise accuracy. An average end-
to-end request in a local network is estimated between 12ms
and 14ms. The average latency increase was determined over
100000 requests.

Table 4 examines the performance overhead of rendering en-
crypted URLs using Jinja2, employing profiling to ensure accuracy
over end-to-end timing due to the latter’s variability at the millisec-
ond level.

The table compares the mean communication latency for the
base approach, which involves not encrypting URLs, against various
methods employing encrypted URLs. For each request, an HTML
document containing between 10 to 100 unique URLs was returned.
This comparison illustrates that caching both the client key and
the URLs significantly reduces latency, a strategy that should be
particularly effective for URLs with high demand.

Base ENC S-Key S-URLs

10 URLs 0.033ms +0.158ms +0.076ms +0.023ms
100 URLs 0.087ms +1.470ms +0.662ms +0.128ms

Table 4: Performance overhead of encrypting and rendering
unique URLs. Profiling was utilized instead of end-to-end
timing to circumvent the latter’s millisecond-level variabil-
ity, which could lead to inaccuracies. The table presents the
mean communication latency in milliseconds for direct and
encrypted URLs. Base refers to the baseline, meaning our
web application without encrypted endpoints. The average
latency increase was observed over 100000 requests.

5.3 RQ3: Protection Against Attacks
The methodology outlined in this paper primarily aims to mitigate
bot-related threats while also functioning as an automatic whitelist

mechanism for URLs. We briefly discuss this feature, considering it
as a subject for future exploration.

This approach ensures that only URLs explicitly authorized by
the server are accepted, offering protection against certain types of
attacks:
Directory Traversal This method prevents attackers from nav-

igating outside the web root directory to access restricted
files, thus safeguarding against unauthorized directory ac-
cess attempts (e.g., example.com/../../etc/passwd).

Accidental Data Exposure It protects against the accidental ex-
posure of sensitive files, such as configuration files (exam-
ple.com/.env), by ensuring that only URLs deliberately ex-
posed by the server are accessible.

Local File Inclusion (LFI) It obstructs attempts to include files
from the server’s filesystem in the output of a web applica-
tion, a tactic often used to execute arbitrary code or access
sensitive information.

Reflected XSS and SQL Injection Attacks It offers some protec-
tion against attacks that misuse URL parameters to inject
malicious scripts (Reflected XSS) or manipulate database
queries (SQL Injection), as exemplified by attempts like
example.com?item=’– drop table. This method, however, is
only applicable to endpoints where the URL parameters are
predetermined, such as a shopping page displaying related
products or a social media/blog platform suggesting tags
(e.g., example.com?tag=outfit). This protection mechanism
is ineffective if fully user-controlled input is accepted, such
as in search fields. Additionally, in cases where this method
is effective, it may inadvertently restrict users who guess
parameters. For instance, a user interested in exploring hard-
ware instead of outfits cannot simply change the tag in the
URL bar, even if the tag exists.

At the heart of this protective mechanism is the requirement for
each URL to carry a valid MAC issued by the server. The use of a
MAC that resists existential forgery under chosen-message attacks
ensures the impossibility for attackers to forge valid URLs.

However, it is crucial to recognize the limitations of this security
measure. For URL segments that are completely under user control,
such as parameters in search fields, our approach falls short. This is
because the URL cannot be entirely pre-constructed by the server;
it can only be partially created, as the user’s search parameter
is unknown. Further, in scenarios where an attacker successfully
persuades the server to serve a malicious URL, the URL would
be considered valid. In the previous example with the tag system
(example.com?tag=outfit), this prevents an attacker from merely
attempting to insert malicious payloads directly into the parameter
system. However, if the attacker can create a new tag containing
the malicious payload, the attack would succeed. The practicality
of such an exploit depends on the website’s specific configurations
and security measures, which may deter or entirely prevent the
attacker’s success.

5.4 Limitations and Privacy Implications
While encrypted endpoints limit the scalability of bots, it is hard
to quantify how much harder they make it. This is mainly due to
the quality of the used obfuscation. In an ideal scenario, a perfect

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

obfuscation is used in conjunction with our approach, which would
prevent bots’ scaling. However, there is no such thing as a perfect
obfuscation.

Services that use encrypted endpoints and require URL sharing
between users (e.g., an online shop or social media) or need to be
interoperable with third-party services (e.g., a payment provider or
identity provider) must identify URLs or URL paths that need to be
shareable. These URLs and corresponding actions must be commu-
nicated to the middleware implementing the encrypted endpoints.
In large applications, this might increase the initial cost of using
encrypted endpoints.

Further, despite the introduction of unique endpoints for each
account, attackers with substantial resources, be it in terms of com-
putational power or time, could potentially overcome this hurdle.
By programming bots that simulate user interactions with the UI,
attackers could sidestep the account-specific endpoint requirement.
While such UI-based bot creation might prove resource-intensive,
especially in the case of smartphone apps requiring the use of Vir-
tual Machines (VMs), determined attackers may still find ways
to automate these processes effectively, e.g., by starting bots se-
quentially to save resources. Moreover, the reliance on UI inter-
actions constrains the capabilities of these bots to the scope of
functionalities exposed through the UI. This limitation could hinder
attackers seeking more nuanced and intricate actions that direct
controlled requests could achieve. Therefore, while the „encrypted
endpoints” approach offers strong protection against simple and
some advanced bots, it might fall short against adversaries who are
adept at crafting UI-based automation techniques.

Our approach can be used more as defending against bots alone.
It also destroys the ability to read URLs and their parameters. In
today’s Internet, the URL path or its parameters often reveal infor-
mation about a resource. When these URLs are encrypted, this is no
longer the case. Authenticating URLs alone cannot remove tracking
parameters without invalidating the URL. Facebook has already
started doing this [3]. Unfortunately, we do not have any technical
countermeasures against this approach. The main problem with
this approach, which makes it worse than tracking cookies, is that
all tracking information is stored in the URL itself and thus affects
shared links.

6 COMBINING ENCRYPTED ENDPOINTS
WITH CODE OBFUSCATION

Code obfuscation is orthogonal to our approach but necessary
to protect against advanced and realistic EP attackers. We define
several requirements that a code obfuscation technique should
fulfill. The issue is that even if all endpoints are encrypted, the
location within the application remains unchanged. Thus, a bot
creator does not need to save the endpoint but rather the position
where the URL is stored. This could be a file offset, an XPath or CSS
Selector in a web context, or even a line number in JavaScript.

We identified several requirements for a code obfuscation ap-
proach. The most important is the obfuscation of the URL location,
ensuring that the URL is not easily identifiable through its position
or the relationship between objects. The URL may also be split
and stored in multiple locations if the context permits, such as
in programming languages like JavaScript, but not in languages

like HTML or CSS. Another requirement is non-deterministic re-
sults, meaning the code obfuscation should ideally produce differ-
ent versions of the application for different users. Deterministic
obfuscation methods should be combined with non-deterministic
techniques. Additionally, the obfuscation should have low overhead
in runtime and build. The resources required to build the obfuscated
application should be minimal, which could be addressed by pre-
building multiple versions of the application. Lastly, full application
obfuscation is essential, meaning the entire application containing
or potentially containing URLs should be obfuscated. This is par-
ticularly important for web applications, where it is insufficient to
obfuscate only the JavaScript if it inserts URLs into the HTML.

While most applications have many options due to their ability
to modify themselves at runtime, standalone HTML pages with-
out JavaScript present a challenge. HTML cannot modify itself at
runtime and must therefore include all URLs in clear text. Given
that the obfuscation technique can change the location of URLs as
specified in our requirements, an attacker could still brute force all
possible URLs. To mitigate this, some form of rate limiting or trap
URLs should be included. For instance, if a bot attempts to access a
fake URL, it should be blocked from further interaction.

Using our approach, the URLs do not reveal any information
about themselves as they are encrypted and can be padded to equal
lengths. Suitable approaches are discussed in Section 3.2.

7 CONCLUSION
Our investigation reveals that while numerous strategies primar-
ily aim at complicating the initial creation of bots, our proposed
methodology focuses on impeding their applicability across dif-
ferent user accounts. This objective is accomplished by assigning
unique, encrypted endpoints (URLs) to each client, thereby necessi-
tating that attackers extract fresh endpoints for every bot directly
from server responses. Implemented as a middleware layer within
the backend architecture, our solution facilitates seamless integra-
tion with existing systems, ensuring minimal impact on perfor-
mance. An empirical evaluation of our approach indicates a modest
increase in latency overhead by approximately 0.03ms - 0.0016ms
for incoming requests under the most realistic operational scenar-
ios. Alone, our method proves effective in thwarting the efforts of
simple bots and automated tools. However, its efficacy is markedly
enhanced when combined with targeted code obfuscation tech-
niques, significantly curtailing the scalability of sophisticated bot
operations. Looking forward, we aim to conduct a comprehensive
empirical analysis of our approach, focusing on identifying and
integrating code obfuscation methods specifically designed to com-
bat bot activities. This will thereby further reinforce the security of
web services against automated threats.

REFERENCES
[1] 2021. Humanity Wastes about 500 Years per Day on CAPTCHAs. It’s Time

to End This Madness. http://blog.cloudflare.com/introducing-cryptographic-
attestation-of-personhood/

[2] 2022. 2022 Bad Bot Report | Evasive Bots Drive Online Fraud | Imperva. https:
//www.imperva.com/resources/resource-library/reports/bad-bot-report/

[3] 2022. Facebook Gets Round Tracking Privacy Measure by Encrypting
Links. https://www.malwarebytes.com/blog/news/2022/07/facebook-gets-
round-tracking-privacy-measure-by-encrypting-links

[4] 2023. Intel® Advanced Encryption Standard Instructions (AES-NI). https:
//www.intel.com/content/www/us/en/developer/articles/technical/advanced-

http://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
http://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.malwarebytes.com/blog/news/2022/07/facebook-gets-round-tracking-privacy-measure-by-encrypting-links
https://www.malwarebytes.com/blog/news/2022/07/facebook-gets-round-tracking-privacy-measure-by-encrypting-links
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

RAID 2024, September 30–October 02, 2024, Padua, Italy See et al.

encryption-standard-instructions-aes-ni.html
[5] Alejandro Acien, Aythami Morales, John V Monaco, Ruben Vera-Rodriguez,

and Julian Fierrez. 2021. TypeNet: Deep learning keystroke biometrics. IEEE
Transactions on Biometrics, Behavior, and Identity Science 4, 1 (2021), 57–70.

[6] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani, Ejaz
Ahmed, Muhammad Shiraz, Steven Furnell, Amir Hayat, and Muhammad Khur-
ram Khan. 2015. Man-At-The-End attacks: Analysis, taxonomy, human aspects,
motivation and future directions. Journal of Network and Computer Applications
48 (2015), 44–57.

[7] Fatmah H Alqahtani and Fawaz A Alsulaiman. 2020. Is image-based CAPTCHA
secure against attacks based on machine learning? An experimental study. Com-
puters & Security 88 (2020), 101635.

[8] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications.
189–200.

[9] Alessandro Bessi and Emilio Ferrara. 2016. Social bots distort the 2016 US
Presidential election online discussion. First monday 21, 11-7 (2016).

[10] BinBashBanana. 2024. BinBashBanana/html-obfuscator. https://github.com/
BinBashBanana/html-obfuscator original-date: 2020-04-22T00:23:10Z.

[11] Douglas Brewer, Kang Li, Laksmish Ramaswamy, and Calton Pu. 2010. A Link
Obfuscation Service to Detect Webbots. In 2010 IEEE International Conference
on Services Computing. IEEE, Miami, FL, USA, 433–440. https://doi.org/10.1109/
SCC.2010.89

[12] Christian Collberg. 2001. the tigress c obfuscator. Retrieved 2021-12-07 from
https://tigress.wtf/about.html

[13] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164–180.

[14] Ahmed Diab and Tawfiq Barhoum. 2018. Prevent XPath and CSS Based Scrapers
by Using Markup Randomizer. Int. Arab. J. e Technol. 5, 2 (2018), 78–87.

[15] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. 1999. Hypertext transfer protocol–HTTP/1.1. Techni-
cal Report.

[16] R Fielding, M Nottingham, and J Reschke. 2022. RFC 9110: HTTP Semantics.
[17] Roy Fielding and Julian Reschke. 2014. RFC 7231: Hypertext Transfer Protocol

(HTTP/1.1): semantics and content.
[18] NickHeath. 2010. Expedia on how one extra data field can cost $12m. https://www.

zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/. Ac-
cessed: 2021-10-18.

[19] Md Imran Hossen, Yazhou Tu, Md Fazle Rabby, Md Nazmul Islam, Hui Cao,
and Xiali Hei. 2020. An Object Detection based Solver for {Google’s} Image
{reCAPTCHA} v2. In RAID 2020. 269–284.

[20] Apple Inc. [n. d.]. Replace CAPTCHAs with Private Access Tokens - WWDC22 -
Videos. https://developer.apple.com/videos/play/wwdc2022/10077/

[21] ProtWare Inc. [n. d.]. Encrypt HTML source, Javascript, ASP. Protect links &
images. HTML encryption. https://www.protware.com/

[22] Jscrambler. [n. d.]. Webpage Integrity: Manage Third-party Risks. https://
jscrambler.com/webpage-integrity

[23] Timofey Kachalov. [n. d.]. javascript-obfuscator/javascript-obfuscator: A pow-
erful obfuscator for JavaScript and Node.js. https://github.com/javascript-
obfuscator/javascript-obfuscator

[24] Albert Koczy. 2023. Mitmproxy2swagger. https://github.com/alufers/
mitmproxy2swagger

[25] Mohinder Kumar, MK Jindal, and Munish Kumar. 2022. A systematic survey on
CAPTCHA recognition: types, creation and breaking techniques. Archives of
Computational Methods in Engineering 29, 2 (2022), 1107–1136.

[26] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2014. Reducing
web test cases aging by means of robust XPath locators. In 2014 IEEE International
Symposium on Software Reliability Engineering Workshops. IEEE, 449–454.

[27] Wei Liu. 2018. Introducing reCAPTCHA v3: the new way to stop
bots. https://developers.google.com/search/blog/2018/10/introducing-recaptcha-
v3-new-way-to. Accessed: 2021-05-20.

[28] Intuition Machines. 2018. Stop more bots. Start protecting user privacy. https:
//www.hcaptcha.com/. Accessed: 2021-05-20.

[29] Genesis Mobile. [n. d.]. JavaScript Obfuscator - Protect your JavaScript Code.
https://jasob.com/

[30] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 569–580. https://doi.org/10.1109/DSN48987.2021.00065

[31] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP 2012 (2012).

[32] August See, Leon Fritz, and Mathias Fischer. 2022. Polymorphic Protocols at
the Example of Mitigating Web Bots. In European Symposium on Research in
Computer Security. Springer, 106–124.

[33] August See, Tatjana Wingarz, Matz Radloff, and Mathias Fischer. 2023. De-
tecting Web Bots via Mouse Dynamics and Communication Metadata. In IFIP

International Conference on ICT Systems Security and Privacy Protection. Springer,
73–86.

[34] see-aestas. 2020. Charles-Extractor. https://github.com/see-aestas/Charles-
Extractor

[35] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. 2016. I am
robot:(deep) learning to break semantic image captchas. In 2016 IEEE EuroS&P.
IEEE, 388–403.

[36] VMProtect Software. 2021. VMProtect Software Protection. Retrieved 2021-12-07
from https://vmpsoft.com/

[37] Grażyna Suchacka, Alberto Cabri, Stefano Rovetta, and Francesco Masulli. 2021.
Efficient on-the-fly Web bot detection. Knowledge-Based Systems 223 (2021),
107074.

[38] Mahin Talukder, Syed Islam, and Paolo Falcarin. 2019. Analysis of obfuscated
code with program slicing. In 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security). IEEE, 1–7.

[39] Oreans Technologies. 2022. Oreans Technologies : Software Security Defined.
https://www.oreans.com/Themida.php Accessed 2021-12-07.

[40] Shardul Vikram, Chao Yang, and Guofei Gu. 2013. Nomad: Towards non-intrusive
moving-target defense against web bots. In CNS. IEEE, 55–63.

[41] WeihangWang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang, and
Patrick Eugster. 2016. Webranz: web page randomization for better advertisement
delivery and web-bot prevention. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 205–216.

[42] Ang Wei, Yuxuan Zhao, and Zhongmin Cai. 2019. A deep learning approach
to web bot detection using mouse behavioral biometrics. In Biometric Recogni-
tion: 14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019,
Proceedings 14. Springer, 388–395.

[43] Tara Whalen, Thibault Meunier, Mrudula Kodali, Alex Davidson, Marwan
Fayed, Armando Faz-Hernández, Watson Ladd, Deepak Maram, Nick Sullivan,
Benedikt Christoph Wolters, et al. 2022. Let The Right One In: Attestation as a
Usable {CAPTCHA} Alternative. In Eighteenth Symposium on Usable Privacy
and Security (SOUPS 2022). 599–612.

[44] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation
techniques in malicious JavaScript code: A measurement study. In 2012 7th Inter-
national Conference on Malicious and Unwanted Software. IEEE, 9–16.

[45] Jason Yung. 2024. json2d/obscure. https://github.com/json2d/obscure original-
date: 2016-05-30T22:04:01Z.

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://github.com/BinBashBanana/html-obfuscator
https://github.com/BinBashBanana/html-obfuscator
https://doi.org/10.1109/SCC.2010.89
https://doi.org/10.1109/SCC.2010.89
https://tigress.wtf/about.html
https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
https://developer.apple.com/videos/play/wwdc2022/10077/
https://www.protware.com/
https://jscrambler.com/webpage-integrity
https://jscrambler.com/webpage-integrity
https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/alufers/mitmproxy2swagger
https://github.com/alufers/mitmproxy2swagger
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://www.hcaptcha.com/
https://www.hcaptcha.com/
https://jasob.com/
https://doi.org/10.1109/DSN48987.2021.00065
https://github.com/see-aestas/Charles-Extractor
https://github.com/see-aestas/Charles-Extractor
https://vmpsoft.com/
https://www.oreans.com/Themida.php
https://github.com/json2d/obscure

Encrypted Endpoints RAID 2024, September 30–October 02, 2024, Padua, Italy

Direct ENC S-Key S-URLs

Latency 10 URLs 13.9ms +3.1% +2.4% +1%
Latency 100 URLs 14ms +4.3% +2.1% +0.7%
Latency 1000 URLs 14.1ms +5.7% +2.1% +0.8%

Table 5: Mean communication latency in milliseconds rela-
tive to direct server communication, expressed as a percent-
age increase (N=100000). Dynamic URL generation and 100
KB webpage padding were employed.

A ALTERNATIVE PROXY IMPLEMENTATION
We further explored implementing our approach through a trans-
parent proxy rather than as middleware, eliminating the need for
any modifications to the service’s code. While this method offered
ease of integration to any backend, it introduced significant per-
formance drawbacks, primarily due to the additional resources
required for parsing.

A.1 Performance Overhead
Our proxy-based implementation involved intercepting requests to
dynamically identify URLs, generate keys, and encrypt URLs, con-
tributing to increased latency due to the computational demands
of these operations. To quantify the impact on latency, we con-
ducted tests on three simulated websites containing 10, 100, and
1000 URLs, respectively. Each website was standardized to 100 KB
in size, inclusive of URLs and randomly generated padding bytes,
with 1000 URLs approximating 95 KB of the total content. This
choice was informed by an analysis of 10,000 random websites
from the Majestic Million list, revealing a median presence of 106
URLs per site. The latency measurements were performed on a
Debian 11 system equipped with an Intel i5-8365U CPU, targeting
a Gunicorn/Flask HTTP server. Latency was calculated from the
initiation of the request to the full receipt of the response, without
reusing TCP connections for subsequent requests.

Table 5 presents the latency findings within a local network
context, employing AES-GCM for authenticated encryption, with
the processor supporting AES-NI.

The results indicate that direct server communication (Direct)
is the fastest, with latency increases for encrypted URLs (ENC),
stored client keys (S-Key), and stored encrypted URLs (S-URLs)
being attributable to the additional computational steps involved.
Notably, the performance gain from storing client keys or URLs is
modest, given the already low overhead from encryption.

Transitioning from a proxy to backend middleware implementa-
tion enhances efficiency, albeit at the cost of requiring code adjust-
ments. The proxy model, despite its straightforward setup, incurs
significant performance losses, especially with an increasing num-
ber of URLs, due largely to the time-intensive nature of HTML URL
parsing.

A.2 Organisational Overhead
The complexity of directly implementing encrypted endpoints
varies with the existing codebase. Here, the primary challenge
lies in statically extracting URLs from backend responses, a process
that may miss URLs dynamically generated via JavaScript.

0.0 0.2 0.4 0.6 0.8 1.0
Error (dynamic - static)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Difference of static to dynamically identified URLs

Figure 3: Overview of Possible Encrypted Endpoint Usage
(N=10000)

Our analysis of 10,000 URLs from the Majestic Million list, com-
paring static and dynamic extraction methods, sought to quantify
the potential discrepancy. While not exhaustive, this comparison
sheds light on the limits of static extraction in capturing dynami-
cally generated URLs, as illustrated in Figure 3.

This analysis reveals instances where dynamic extraction iden-
tifies URLs not found through static methods, with a mean error
rate of 0.1188 and 78.22% of sites showing no discrepancy between
the two. Further investigation into sites with large discrepancies
highlighted asynchronous JavaScript processes as a primary fac-
tor, suggesting that encrypted endpoint deployment could benefit
from mechanisms like mutation observers to capture and encrypt
dynamically generated links.

Reflecting on the findings from Section 5.2, the deployment of
our approach, particularly as a proxy, appears less burdensome
than initially anticipated. The performance is deemed acceptable
for non-time-critical applications, and the proxy model allows for
experimentation without altering the existing system architecture.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Threat and Attacker Model
	2.1 Considered Bots
	2.2 Attacker Models

	3 Requirements and Related Work
	3.1 Requirements for Bot Defense Approaches
	3.2 Related Work

	4 Encrypted Endpoints
	4.1 Basic Approach
	4.2 Formal Model
	4.3 Using Encrypted Endpoints
	4.4 Optimisations

	5 Evaluation
	5.1 RQ1: Security Discussion
	5.2 RQ2: Overhead
	5.3 RQ3: Protection Against Attacks
	5.4 Limitations and Privacy Implications

	6 Combining Encrypted Endpoints with Code Obfuscation
	7 Conclusion
	References
	A Alternative Proxy Implementation
	A.1 Performance Overhead
	A.2 Organisational Overhead

