Cross-Regional Malware Detection via Model Distilling and
Federated Learning

Marcus Botacin
botacin@tamu.edu
Texas A&M University
USA

ABSTRACT

Machine Learning (ML) is a key part of modern malware detection
pipelines, but its application is not straightforward. It involves mul-
tiple practical challenges that are frequently unaddressed by the
literature works. A key challenge is the heterogeneity of scenar-
ios. Antivirus (AV) companies for instance operate under different
performance constraints in the backend and in the endpoint, and
with a diversity of datasets according to the country they operate
in. In this paper, we evaluate the impact of these heterogeneous
aspects by developing a classification pipeline for 3 datasets of 10K
malware samples each collected by an AV company in the USA,
Brazil, and Japan in the same period. We characterize the different
requirements for these datasets and we show that a different num-
ber of features is required to reach the optimal detection rate in
each scenario. We show that a global model combining the three
datasets increases the detection of the three individual datasets. We
propose using Federated Learning (FL) to build the global model
and a distilling process to generate the local versions. We order the
samples temporally to show that although retraining on concept
drift detection helps recover the detection rate, only a FL approach
can increase the detection rate.

CCS CONCEPTS

- Software and its engineering — Software creation and man-
agement; « Security and privacy — Malware and its mitiga-
tion; Human and societal aspects of security and privacy; Intru-
sion/anomaly detection and malware mitigation; « Comput-
ing methodologies — Machine learning.

KEYWORDS

malware, federated learning, model distilling

ACM Reference Format:

Marcus Botacin and Heitor Gomes. 2024. Cross-Regional Malware Detec-
tion via Model Distilling and Federated Learning. In The 27th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2024), Sep-
tember 30-October 02, 2024, Padua, Italy. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3678890.3678893

This work is licensed under a Creative Commons Attribution International
4.0 License.

RAID 2024, September 30-October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678893

Heitor Gomes
heitor.gomes@vuw.ac.nz
Victoria University of Wellington
NZ

1 INTRODUCTION

Malware attacks are on the rise, and so is the use of Machine Learn-
ing (ML) to counter them [1]. Thus, developing ML pipelines to
detect malware becomes key, as they are the basis of many security
solutions, such as AntiViruses (AVs) [10]. However, these pipelines
must be realistic [14, 31] to actually protect the users. This work is
an effort to evaluate the realistic constraints of ML AVs.

Previous pipelines published in the literature presented
two main assumptions that do not hold in reality: (1)
the bigger the model, the better [9]. They assume that mod-
els can grow indefinitely to achieve greater accuracy, with no
performance constraint. In practice, security solutions should
be fast to not disrupt the regular system operation; and (2)
One size fits all [7]. They assume that threats are global, with no
localized threats to be handled particularly. This is not the case
for AV companies that operate in multiple different countries all
around the world.

We demonstrate how these assumptions fail by simulating an
AV company operating in different regions of the world and try-
ing to develop models that achieve the best performance in them,
both in accuracy as well as in execution time and storage require-
ments. To that, we partnered with an AV company that provided
us with 30K malware samples (10K for each country) collected in
the same period (2017) in the United States (US), Brazil (BR), and
Japan (JP). We used this data to explore the best strategies to build
detection models and we hope this information might inform future
developments in the field.

We first demonstrate that the size of the best feature set for each
scenario varies, such that adopting a uniform, large model imposes
unnecessary extra performance costs. Further, we also demonstrate
that the knowledge learned by classifiers in each scenario is actually
different, such that a global model does not naturally exist, except
by intentional construction.

Our goal to move forward is to answer the question What is
the best way to build detection models for heterogeneous threat
scenarios like this? To do so, we evaluate how to achieve two
competing goals: (i) making models smaller to achieve execution
performance requirements; and (2) making models larger to create
a global knowledge that generalizes. To conciliate that, we propose
splitting the scenarios in two: (1) a local model that is responsible
for achieving high execution performance in the specific country;
and (2) a large global model responsible for transferring knowledge
between multiple countries.

We propose AV companies use Federated Learning (FL) [25]
to build the global model. Unlike previous proposals, we do not
propose that AV users (clients) run training routines on their ma-
chines [25, 28]. Instead, we propose the AV subsidiaries in each

https://doi.org/10.1145/3678890.3678893
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3678890.3678893

RAID 2024, September 30-October 02, 2024, Padua, Italy

country train local models that are at the same time deployed in
the clients for that region and also sent to an AV centralized server
to be consolidated in the global model. The information from the
other countries is sent back to the subsidiaries to enrich their mod-
els. This strategy ensures the transfer of knowledge between the
countries and it does not present risks of poisoning [37], unlike
previous approaches, as all AV subsidiaries are trusted entities.

We also propose that the model from each subsidiary should be
distilled [23] into a small model to be deployed in the endpoints
(client machines) to achieve high execution performance. We rely
upon the observation that each scenario requires a different fea-
ture set size and propose that models of different sizes should be
derived from the main model. To accomplish that, we propose a
modified version of the Random Forest (RF) algorithm that relies
on a heterogeneous [2] set of trees of varied sizes.

We evaluate our propositions via a series of experiments and
take a step further towards realistic evaluation by deriving from the
ML model detection rules such as the ones used in commercial AVs
(YARA [38]). We show that the differences in the features used by
the ML models cause significant differences in the matching perfor-
mance of the derived rules, motivating the presented investigation
on the fine-tuning of the detection models.

In summary, our findings are:

o Different datasets require different numbers of features to
be used on an ideal model able to achieve the maximum
detection rate (e.g., 270 for US and 800 for JP).

e Making models bigger (e.g., by increasing the number of ran-
dom forest trees) does not significantly increases detection
rates for individual datasets (e.g., 0.5% gain for US), which
supports the benefit of distilling smaller models.

e Making models bigger indeed helps models trained in one
dataset to generalize better to detect the malware samples
from others (e.g., from 60% to 95% in the US model), thus
supporting the benefits of having global models.

o A time-series evaluation of the sample emergence reveals
that although retraining on traditional concept drift detec-
tion allows recovering the original detection rate of individ-
ual models, their detection rate is only increased when data
from the global model is used to complement them.

This paper’s contributions are as follows:

e We shed light on the challenges of operating detection
pipelines for heterogeneous scenarios.

o We demonstrate how datasets from different regions have
different requirements in terms of the number of features
required to achieve a target detection rate.

e We propose a combination of federated learning and model
distilling with a heterogeneous number of features to adapt
to the distinct scenario’s requirements.

2 CHALLENGES & ARCHITECTURAL DESIGN

The first problem we address is the runtime matching performance
of the ML models used by AV companies. AVs operate in a 2-level ar-
chitecture, with components placed both in the end-user machines
(endpoints) and on the AV cloud servers. The hard-to-classify sam-
ples not detected at the endpoint are sent for cloud inspection. Since
these environments have different performance capabilities, they

Botacin adn Gomes

cannot run the same ML model, as proposed by many literature
works. The endpoint’s matching rules should be a simpler version
of the cloud model. We propose that the endpoint should run a
distilled version of the cloud model, as illustrated by Figure 1. In
this architecture, the endpoint model is distilled to be compact (and
thus faster), using a minimum number of features.

% [

| []

Figure 1: Single Model Flgurerz Multlple R;gi:)'nal
Distillation. Model Distillation.

N

(%

The second problem we tackle is the accuracy of heterogeneous
scenarios. Since AV companies operate in multiple countries, a
single cloud model also does not apply to all of them. Thus, the pre-
vious architecture must be replicated for each country, as shown in
Figure 2. With the parallel distillation of different endpoint models,
each local model is allowed to have a different feature set.

F—FTr 71

& 4

-

MACHINE LEARNING o

-

MACHINE LEARNING] MACHINE LEARNING

|

i |

DECISION TREE e DECISION TREE DECISION TREE o

Figure 3: Regional Model Distillation from Global.

These two problems interconnect because data coming from one
model might help increase the detection rate of another model. The
rationale for that is that although the scenarios have particularities,
some attackers might migrate their strategies from one scenario
to another. Therefore, the models’ knowledge should be shared.
The best way to do that is to once again adopt a 2-level approach,
but now by considering the 2-level architecture from Figure 2 as
the country-level client and then build a world-level model (server)
on top of that, as shown in Figure 3. We propose that Federated
Learning (FL) is the appropriate technique for this scenario.

Whereas required to share knowledge, the models should still
be optimized for their local scenarios. Thus, a key challenge of this
architecture is to allow the easy distilling of models with different
settings. We overcome this challenge by proposing a modification in
the Random Forest (RF) algorithm to make it handle heterogeneous
trees, as shown in Figure 4. In the new version, each tree in the
ensemble has a different number of features, such that the distilling
process becomes a matter of collecting an increasing number of

Cross-Regional Malware Detection via Model Distilling and Federated Learning

o d9 9 ol o &9 &« 0
dod0dée dodede

Figure 4: RF’s ensemble of different features set sizes.

trees of increasing feature set size until reaching the target accuracy
rate. After the regional and local models are derived from the global
knowledge, the model is converted into rules by the AVs. The rules
are distributed to the clients to be matched in the endpoints. This
work will discuss in the following the best strategies to implement
and deploy this architecture.

3 METHODOLOGY

Classification Model. This work’s approach is to start from where
the others stopped. Thus, we build on top of previous constructions.
We adopted a previously-published, open-source PE-based classi-
fier [13] to handle our dataset of Windows malware. This model
is composed of categorical features extracted from the PE header
and textual features derived from function imports embedded via
TF-IDF. We modified the model to consider a minimum number of
features to minimize the impact of model size. We implemented a
feature selection mechanism (SelectKBest [35] with F-score) to
consider the most representative features for this model (Sec. 4).
Implementation. We took the original scikit-learn [34] imple-
mentation of the model as a reference. We kept the original feature
extractor implemented in Python and integrated to it the classifier
implementation from the MOA [5] framework for increased analysis
throughput. We adopted the AdaptiveRandomForest [30] classi-
fier for all experiments due to its ability to integrate new training
data without the need for retraining the entire model. Whereas
this classifier was originally designed to be used in stream learning,
we here benefit from this classifier to build the federated learning
component. The proposed algorithm modifications were performed
by training each tree separately as a new decision tree and then
merging them into a new ensemble.

Security Evaluation Metrics. Our goal in this work is not to
present a new ML model with incrementally higher accuracy. Model-
specific accuracy improvements have already been presented by
multiple related works. In turn, we assume that the base model has
a high base accuracy. Our research interest is to evaluate how to
make this accuracy sustainable over time and how to generalize
it for multiple scenarios. Therefore, whenever we train a new ML
model, we target the 99% accuracy level for the binary classifica-
tion problem (malware vs goodware). Since our datasets are fully
balanced, accuracy correctly describes the results.

Target Performance. In this work, we target not only to sustain a
high detection rate but also to cause the minor performance impact
possible. We evaluate performance impact via the size of the model,
as the bigger the model, the greater the storage requirements it
imposes and the longer it takes to traverse it. More specifically, we
aim to select the minimum number of features and the minimum
number of RF trees in the ensemble that allows us to still achieve
the previously specified accuracy rate. We measured model size

RAID 2024, September 30-October 02, 2024, Padua, Italy

as the total number of tree nodes in the RF ensemble. It is key to
highlight that there is a difference between counting the number
of tree nodes and the actual amount of memory allocated to the
tree. Many libraries, such as scikit-learn, allocate memory in
batches, such that the actual storage does not grow linearly with
the tree size. We opted to measure the number of tree nodes to
remain agnostic to the memory allocator.

Results correction. By construction, the RF algorithm presents dif-
ferent results at different training runs. This characteristic provides
it good generalization ability, but it might also bias the results if
we report only an eventually over-positive, single case. To mitigate
this possibility, all results presented in this paper are an average of
10 different runs. Training accuracy is reported as the outcome of
the 10-folding process.

Dataset. In this work, we address the malware detection problem
as a binary classification problem (malware vs. goodware). The
malware dataset is split according to three different scenarios. The
goodware dataset is a generalization of software most users have
on their machines. The goodware samples were retrieved from a
fresh Windows installation and from the crawling of the most pop-
ular applications in Internet software repositories. We ensured all
files were labeled as clean by all VirusTotal engines. We used as
many goodware samples as needed to provide a 50%-50% balance
in the training sets, depending on the availability of malware for
each tested scenario. For each tested scenario, we trained the differ-
ent models with the same incremental set of goodware files, thus
ensuring that any observed difference is due to only the different
malware files for each scenario.

The malware dataset aims to represent the realistic scenario in
which an AV company operates in multiple countries. We consid-
ered three datasets of 10K malware samples each, with no overlaps
or duplicates (The duplicated rate was 33% for each dataset be-
fore we filtered them out). The datasets were collected by an AV
company from infected user machines in the United States (US),
Brazil (BR), and Japan (JP) during the entire year of 2017 and made
exclusively available to us. These datasets were characterized in
previous studies [6, 7]. The BR dataset is composed of 3 types of PE
files (typical EXEs, DLLs, and CPLs) whereas the US and JP datasets
are composed only of EXEs and DLLs, as CPL files were only ob-
served in Brazil. The 3 datasets present more than 100 families, but
the BR dataset has a prevalence (53%) of Password Stealers (PSW)
and Downloaders whereas US and JP have a prevalence (40%) of
Ransomware samples. We consider these datasets a coherent view
of the threat landscape since they were collected by the same com-
pany, in the same period, from the same type of users, and using
the same technique.

Table 1: Dataset Differences. Dynamic analysis events for the
US, Brazil, and Japan datasets.

Behavior us BR JP
Hosts file modification 0.04% 1.09% 0.92%
File creation 64% 24% 70%
File deletion 34% 12% 34%
File modification 63% 16% 46%
Browser modification 0% 1.03% 0.59%
Network traffic 53% 96% 52%

RAID 2024, September 30-October 02, 2024, Padua, Italy

Whereas our dataset is of limited size, to the best of our knowl-
edge, it is the most realistic representation of the heterogeneous
scenarios AV companies operate to date. With these datasets, we
can show the phenomenon and challenges the AV companies are
subject to in the actual scenario. To highlight the diversity of these
scenarios, we analyzed all samples in a dynamic analysis sandbox.
Table 1 shows the prevalence of known malicious behaviors for
the samples in each dataset. The most commonly implemented
behavior for each scenario is different, as their infection context
is different. For instance, the higher frequency of network activity
in BR samples is explained by the prevalence of Downloaders in
this dataset in contrast to the lower frequency of filesystem ac-
tivity compared to US and JP, scenarios much more targeted by
ransomware samples during the collection snapshot. The difference
in the context extends beyond the behaviors and also affects the
sample construction, thus challenging static analysis classification,
the task investigated in this paper.

4 EXPLORING THE SOLUTION SPACE
4.1 Is it enough to have global models?

Feature Selection for malware classification is a Pareto prob-
lem. Models can become larger via two processes: (i) by increasing
the feature set; and (ii) by increasing the number of parameters. We
here evaluate these two possibilities. In the feature dimension, we
trained multiple classifiers with an increasing number of features to
evaluate their contribution to the overall accuracy. We ordered the
features by their statistical significance, such that our experiments
start by adding the most relevant features, aiming to minimize the
total number of features required to reach the target accuracy (99%).
From the parameter perspective, we trained Random Forest (RF)
models with an increasing number of ensemble trees. We varied
the number of trees from one (Decision Tree) to 2000. For reference,
the default tree number for the scikit-learn framework is 100.

We varied the number of features in the models from 2 until the
convergence to the 99% accuracy. We ensured that all experiments
stopped due to the convergence and not due to the lack of new
features, since our original pool of features accounted for a thousand
variables. In our tests, Decision Trees (DTs) never reached the 99%
accuracy goal. In our graphs, we always present the smallest and
the largest ensembles that reached the goal.

We show results for the smallest ensemble to reach the 99% score
and the largest ensemble tested. We omit intermediate curves from
the plots to increase the graph readability. All curves follow the
same characteristics and present values intermediate to the smallest
and largest plotted ensembles.

Figure 5 shows the accuracy scores for the experiment with the
US dataset. In this scenario, the model was trained and evaluated
using the samples collected in the same country. We notice that the
accuracy grows following a Pareto law (80/20 law), in which only a
few features are required to achieve an already significant accuracy
rate, but a much bigger number of features are required to take this
accuracy to the next level (the 99% score). This is expected since
the first features to be added are the most discriminant ones. As
independent discriminant features get scarce, a greater number of
features is required to allow discrimination based on their combined
information. At this point, the increment caused by every new

Botacin adn Gomes

Classification Accuracy vs. Number of Features (US)

Accuracy (%)
-]
w

8s -~ N=2
86 N=2000

3 60 9 120 150 180 210 240 270
Features (#)
Figure 5: Accuracy rates for the US dataset. Accuracy varia-
tion with the increase of the feature set until reaching the
99% value.

feature is marginal. Whereas a few features take the accuracy rate
to the 97% level, hundreds of features are required for the model to
reach the 99% score.

There is no significant gain in using bigger ensembles in this sce-
nario. Whereas bigger ensembles presented greater accuracy scores
for any number of features, this difference has always been smaller
than 1%. Models of all ensemble sizes converged to the 99% score.
The largest model (N=2000) converged first, with 270 features,
whereas the smallest model (N=2) took 290 features to converge.
Model selection from the performance perspective. We previ-
ously identified the size of the set of features required to achieve the
target 99% accuracy score. Previous work that analyzes the malware
classification problem only from the accuracy perspective would
tend to say that the larger the feature set, the better. However, we
here also propose a performance look at the model size. Thus, in
terms of features, there is an accuracy-performance trade-off. The
cost-benefit of adding new features is initially high, as every newly
added feature contributes little to increasing the model size but a
lot to increasing the accuracy score. However, the cost-benefit gets
lower over time, since every new feature makes the model bigger
but adds only small new discrimination capabilities. Therefore, one
should not simply add more features, but add the minimum number
of features to make models remain compact and thus more efficient.

Model Size vs. Number of Tree Nodes (US)
5500000

swoooo| e |
4500000 ,_“." h’.—___—--\..___.
4000000 i
& 3500000 ,1'”
Z 3000000
B 2500000 S B e e N=
2 4 P - N=2
20000001 ¢ / N=100
15000001 7 -~ N=500
; e
1000000 z'v/ -—- N=1000
500000 -~ N=2000
0
0 30 60 90 120 150 180 210 240 270

Features (#)

Figure 6: Model size for the US dataset. Number of nodes for
an increased number of ensemble trees of increasing feature
set sizes.

This same reasoning can be applied to the number of trees in the
ensemble. Whereas adding more trees to the ensemble marginally

Cross-Regional Malware Detection via Model Distilling and Federated Learning

increases the accuracy score, it significantly increases the size of
the model. Figure 6 shows the total number of nodes for the models
for the US dataset. Initially, the models significantly grow when
more features are added, as more information must be processed.
After a break-even point, even though more features are added,
the models do not significantly grow, since most features present
redundant information that can be merged with other conditions.
The most important observation, however, is that adding trees lin-
early increases the size of the models, i.e., doubling the number of
trees doubles the model size. It happens because the decision nodes
are replicated over multiple trees. We observe in the figure that
whereas the number of nodes for the simplest ensemble (N=2) is
almost negligible at this graph scale, the number of nodes for the
largest ensemble (N=2000) is millions. There is a significant dispar-
ity in the number of nodes that can be used to achieve the same 99%
accuracy, such that performance and storage requirements must be
considered in the deployment decision.

The different needs for the Brazilian scenario. Previous works
analyzing feature selection considered only a global model for all
datasets. This is unrealistic for an AV company, since distinct scenar-
ios tend to present different characteristics, and thus requirements.
To show these differences in practice, we repeated the previously
presented experiment for the BR samples.

Classification Accuracy vs. Number of Features (BR)

99 b

y

98 B TSR

Accuracy (%)

30 60 9 120 150 180 210 240 270 300 330
Features (#)
Figure 7: Accuracy rates for the BR dataset. Accuracy varia-
tion with the increase of the feature set until reaching the
99% value.

Figure 7 shows the accuracy rate growth with the number of
features until the convergence for the BR dataset. Overall, the curve
behavior is similar to the one for the US dataset, with the accuracy
score initially growing significantly and followed by a period of
marginal increase, until convergence. As a difference for the US
scenario, the number of features required for this scenario to con-
verge is greater than for the US one. Whereas the previous scenario
required less than 300 features, the BR scenario required 340 fea-
tures to converge. The application of the previous, smaller feature
selector to this scenario would lead to sub-optimal accuracy results.

The characteristics of the models are also similar in terms of the
ensemble size. Figure 8 shows the number of nodes in the ensembles
of different numbers of trees. Once again, the models grow linearly,
doubling the size when the number of trees doubles. However, the
models for the BR dataset are significantly smaller than for the US
scenario. The largest BR ensemble is = 50% the size of the largest
US ensemble. It shows that the features in the BR dataset are much

RAID 2024, September 30-October 02, 2024, Padua, Italy

Model Size vs. Number of Tree Nodes (BR)

5000000 --=- N=3 ---- N=1000
4500000 N=100 -—- N=2000
4000000 -~ N=500
~ 3500000
"% 3000000 !
8 2500000
Z 2000000 {7~
1500000

1000000 {7~
o

500000
0

0 30 60 90 120 150 180 210 240 270 300 330
Features (#)

Figure 8: Model size for the BR dataset. Number of nodes for
an increased number of ensemble trees of increasing feature
set sizes.

more related than in the US scenario, such that can be mixed in the
decision nodes, thus reducing the total model size.

The different needs for the Japanese scenario. We comple-
ment our analysis by repeating the previous experiments for the JP
dataset.

Classification Accuracy vs. Number of Features (JP)

98 oA
97
9%

3
94414
2

Accuracy (%)
-3
w

®
©

- N=2
861 N=2000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Features (#)

Figure 9: Accuracy rates for the JP dataset. Accuracy variation

with the increase of the feature set until reaching the 99%

value.

Figure 9 shows the accuracy rate scores for an increased number
of features in the JP dataset. Overall, this curve also presents the
same characteristics as the ones for the US and BR datasets: the
accuracy initially grows significantly with the first features and
then the growth is marginally increasing. However, unlike the
previous scenarios, the JP dataset presents convergence challenges.
In multiple runs, starting from different seeds, the accuracy score
was close to 99% but without crossing the bar, thus requiring more
and more features until converging. Thus, in multiple cases, such as
the worst case plotted in the figure, the number of required features
to converge (1400) is almost double that of the average case (800).

In this scenario, having more trees in the ensemble helped the
models to deterministically converge with a smaller number of
features than the worst-case for a smaller ensemble. Even in the
case of converging early, the JP dataset requires significantly more
features to converge (800) than the US and BR ones (= 300). Apply-
ing a feature extractor tuned for these scenarios would lead to an
accuracy score of 3% to 4% lower than the target.

Figure 10 shows the model size increase with the addition of
features until the average number of features required for the con-
vergence. We limited the plot to this range to highlight the curve

RAID 2024, September 30-October 02, 2024, Padua, Italy

Model Size vs. Number of Tree Nodes (JP)

5000000 === N=2 -~ N=1000
4500000 N=100 -—- N=2000
4000000 c“--,1:r‘--s,«a-u._h,...._,x --=- N=500

<~ 3500000

/
!
% 3000000 |
g 2500000/

Z 2000000 "('No\—'-——-\r-—-—
1500000 1
1000000 f ~
500000
0
0 100 200 300 400 500 600 700 800

Features (#)

Figure 10: Model size for the JP dataset. Number of nodes for
an increased number of ensemble trees of increasing feature
set sizes.

format as adding more features does not increase the total number
of nodes. With the addition of features, the incoming features are
each time more related, such that they only cause nodes to reorga-
nize and fine-tune their decision parameters, but not to split, thus
not increasing the total model size. Therefore, the model size is
dominated once again by the number of trees rather than by the
number of features, such that the trade-off between early conver-
gence due to multiple trees and the addition of more features is
better solved from the storage perspective by adding more features.
The different needs for a global model. We showed how results
differ from dataset to dataset. We claim it is key to look at the
individual scenarios in addition to the global one, as done by most
of the previous works. To highlight the differences between local
and global models, we created a global model mixing the 3 datasets.

Classification Accuracy vs. Number of Features (Global)

2
\‘\

Accuracy (%)

[
881 -~ N=3
N=2000

100 200 300 400 500 600 700
Features (#)
Figure 11: Accuracy rates for the combined dataset. Accuracy
variation with the increase of the feature set until reaching
the 99% value.

Figure 11 shows how the accuracy grows with feature addition.

Overall, the global curve presents the same behavior as the local
ones: an initial period of significant growth followed by a period
of marginal increments. The global model converges to the 99%
accuracy with 400 features if multiple trees are used, and with 800

features if the minimum number of trees (N=3, in this case) is used.

It is important to observe that the global model is not a sum of the
previous models, but a mix of them. In comparison to the BR and
US scenarios, the global model requires more features (= 300 to
400) and more trees (2 to 3) to converge, thus showing that creating
local models for these scenarios is more performance-efficient. The

Botacin adn Gomes

model requires the same number of trees for the JP scenario, but
it requires fewer features to converge, both when considering a
large (400 vs 800) or a reduced (800 vs 1300) number of trees, which
shows that the data distribution from the other scenarios helped to
make the model converge faster. These facts show that if we only
look at the global model, we would not have a good understanding
of each one of the particular scenarios.

Model Size vs. Number of Tree Nodes (Global)

--- N=3 -~ N=1000
| N=500 -—- N=2000

8000000
7000000
6000000
£ 5000000
8
2 4000000
3000000
2000000
1000000
0

*}ﬁ

m}

Ly

0 100 200 300 400 500 600 700
Features (#)
Figure 12: Model size for the combined dataset. Number of
nodes for an increased number of ensemble trees of increas-
ing feature set sizes.

A similar mix of scenarios can be observed in the analysis of the
model size. Figure 12 shows the total number of decision nodes for
the multiple ensemble sizes. We notice that the biggest ensemble in
this model has more nodes (7M) than any of the previous scenarios
(5M for the US), thus showing that adding more data increased the
information diversity, which resulted in more node splits. However,
the total ensemble size is still smaller than the sum of the size of the
three individual models, thus showing redundancy in the decision
data. The ensemble size still grows linearly with the number of trees
on it, thus the number of nodes for the models with multiple trees
is significantly larger than for the smallest model, even though they
use fewer features (the smallest model uses the double). The trade-
off between features and trees is again better handled storage-wise
with more features.

4.2 Does a global model help?

Why do we need a large, global model? We previously demon-
strated that global models do not reflect the reality of specific coun-
tries and that large models are not necessarily better than smaller
models. So, is there a reason to have a large, global model? The reason
for that is that in practice AV companies do not have a complete
view of each local scenario. In turn, they have to cross-relate data
from multiple scenarios to identify trends and attackers’ moves.
Whereas local, small models are good at detecting the particular-
ities of each scenario, global models are supposed to have better
generalization abilities. To demonstrate that in practice, we took the
classifiers trained for each local scenario and applied them against
the samples from the other scenarios to simulate the case in which
an AV company is observing a wave of new, unknown samples
coming from a different place.

Figure 13 shows the accuracy rate variation with feature set size
and the number of ensemble trees when the trained US model is
used to predict the samples from the BR and JP datasets. Notice
that in this experiment we significantly expanded the number of

Cross-Regional Malware Detection via Model Distilling and Federated Learning

100 Classification Accuracy vs. Number of Features (US vs. BR and JP)

95

920 —

7

85 NN == A N
80 \
75 \ FEAN
70 \~/ N !
65 Yoo L v v ¥
60 ¥ —— BR(N=3) —— JP(N=3)

55 BR(N=2000) ~—— JP (N=2000)

Accuracy (%)

50
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450
Features (#)
Figure 13: Cross-dataset accuracy rate. Trained US model
classifying the samples from the other datasets.

considered features beyond the minimum required to achieve the
99% score in the original dataset. Although the target accuracy goal
was achieved for the original samples, it was never achieved for the
other datasets. The maximum accuracy value reached was 95% for
the JP dataset, thus showing that the characteristics between the
scenarios are really different. The detection of BR malware samples
is significantly lower (60% in the worst case), which shows that mod-
els do not necessarily generalize well over multiple datasets. We
notice that in both scenarios it is advantageous to use a larger num-
ber of trees. Both for JP and for BR, the large-tree models presented
higher accuracy rates. In the BR case, the larger tree presented
significantly fewer variations, as clearly seen in the interval with
more than 1000 features. Therefore, whereas few-tree models are
better at detecting known threats (AV end-points), large-tree mod-
els generalize more, thus they are worth using in less constrained
devices (AV backends).

Models for different regions really detect different patterns.
The generalization ability a model will have is strongly tied to
the origin dataset it was trained on. We highlight that aspect by
repeating the previous experiments taking the BR and JP datasets
as a basis.

Classification Accuracy vs. Number of Features (BR vs. US and JP)

70

65

60 L)
—_ 2 e

AN /

55 ——~- PR AN \—’\ J \
s 2 NN K.,,._\—/ ——\‘--\4
5 AR DR AR, ,.—-r‘ 4= N ""',-\ ‘>
8 a5 ANEA = ~ ! N2
< \ ~_-’ \\ /I

40 \ s N,

N7 —— US(N=3) —— JP(N=3)
35 Se US (N=2000) —— JP (N=2000)
30

50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450
Features (#)

Figure 14: Cross-dataset accuracy rate. Trained BR model

classifying the samples from the other datasets.

Figure 14 shows the accuracy score when the BR model is used
to predict the US and JP samples. Once again, whereas the original
model is able to achieve a 99% accuracy in the original dataset,
the results with the datasets from different regions are far from
the target. In the BR case, the original model presents less than
50% accuracy when tested with different datasets, indicating that
the criteria that are used in the BR dataset to separate goodware
from malware are totally distinct from the ones used in the other
scenarios, leading to label flipping.

RAID 2024, September 30-October 02, 2024, Padua, Italy

Classification Accuracy vs. Number of Features (JP vs. BR and US)

100
95
90 8 A S S A S S N S v 4
7
Aol N Ly L A
& 85 --_r:;«‘/ V\~/ NN V.t A \V,
5 BOR A ‘/’\ A ‘r("'_/i\-\- N ST
fr Y, L
8 75+~ \‘ /, N~ " \ _J\\ ,I ’e.‘\
=3
§ 70 v
65
60 —= BR(N=3) —= US(N=3)
55 BR (N=2000) == US (N=2000)

50
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450
Features (#)
Figure 15: Cross-dataset accuracy rate. Trained JP model clas-
sifying the samples from the other datasets.

Figure 15 shows the accuracy score when the JP model is used
to predict the US and BR samples. The JP scenario presents the
smallest amplitude variation among the datasets. However, the
maximum accuracy reached was 90%, far from the 99% target. In this
scenario, once again having bigger ensembles helps in sustaining
the generalization, as clearly observed between 600 and 1300.

4.3 How to best build local-to-global models?

Federated Learning (FL) helps build global models. We pre-
viously showed that global models are good for generalizing and
discovering new threats and that local models are required to better
understand the local scenarios. Therefore, it is key to have a mecha-
nism to bridge the gap between them. A solution for that is to build
a FL mechanism inside the AV company in which the local models
send data to the AV server to build a global model. A challenge is
that AV companies will not have an entire dataset at some point,
but the dataset is incrementally built as more samples are collected
over time. We evaluate this scenario via an experiment in which
we send the same proportion of the different datasets to a global
server to simulate the effect of the collection over time. The sent
samples are randomly chosen. The trained global model is used to
predict the remaining samples in the three datasets.

Classification Accuracy vs. Dataset Portion (Base=US,| BR JP)
Lol

-

= N WW B B UINIO OV NN 0VOD
oUIOUIOUIOUIO IO IO TICUIONIOUIO
N
~

Accuracy (%)

P —— Us == JP
VG BR

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)

Figure 16: Building a global model. Accuracy rate for building

a global model from different portions of the source datasets.

Figure 16 shows the accuracy rate achieved in detecting the sam-
ples of the three datasets when different portions of these datasets
are used to build a global model. In this experiment, the feature
set size is the one that allows the global model to achieve the 99%
accuracy rate. The accuracy rate starts from zero, when no data is

RAID 2024, September 30-October 02, 2024, Padua, Italy

available, and grows as more data is provided to the model. The
global model achieved the 99% accuracy rate for the three entire
datasets when 80% of all datasets were considered. It is interesting
to notice that the global model does not need an entire view of the
local datasets to scale well. With 30% of all the source datasets, the
total detection rate is already over 80%. With 50% of the datasets,
the accuracy rate is already over 90%. This shows that more im-
portant than the amount of data, sharing data is the key step for
increased detection capabilities.

Enriching an existing scenario is more efficient than train-
ing from scratch. We have previously shown that sending data
from the local model to the global model helps create a model that
generalizes more and thus discovers more new samples. We are not
the first to observe this possibility, but previous works present an
assumption that does not fit reality. They assume that the models
will be trained from scratch, as we previously presented. In reality,
AV companies will have a baseline model that they already oper-
ate, therefore, the correct way to evaluate that is by enriching the
existing model with data from the other scenarios. The problem
with assuming a model created from scratch is that it will report
that the portion of the dataset required to train a model is different
it actually is in practice. To show this difference, we repeated the
experiment by refining the existing models. In all cases, a random
selection of samples is sent to the main model.

100 Classification Accuracy vs. Dataset Portion (Base=US)

95 =777
/
/
g 90/
oy
8 85
=3
Q
]
< 80
75 —-— US - JP
BR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)

Figure 17: Extending the existing US model. Accuracy rates

on the different datasets for different portions of the source

datasets using random sample selection.

Figure 17 shows the accuracy rate when the US model is enriched
with different portions of the BR and JP datasets and it is used to
predict malware samples in these two datasets. We notice the model
already starts classifying the samples from the US dataset at the
99% accuracy rate it was trained on. The increase of data from other
scenarios marginally diminished the accuracy to a bit over 98%. In
turn, adding data from other scenarios significantly increased the
accuracy rate for them. Adding 5% of data from other scenarios
significantly increased the detection rate. For the BR samples, for
instance, it was enough to grow the accuracy rate from 75% to over
95%. After this point, the accuracy marginally grows with more
data. In the end, the US model becomes able to detect BR and JP
samples with 99% accuracy. The advantage in this scenario is the
ability to quickly start detecting more samples as the first chunks
of data are added to the classifier.

Figure 18 shows the accuracy rate when the BR model is enriched
with different portions of the US and JP datasets and it is used to

Botacin adn Gomes

Classification Accuracy vs. Dataset Portion (Base=BR)

———

Accuracy (%)

-— Us == JP
351, BR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)

Figure 18: Extending the existing BR model. Accuracy rates
on the different datasets for different portions of the source
datasets using random sample selection.

predict malware samples in these two datasets. Once again, the
detection in the BR dataset is not affected by the data addition. In
turn, adding data from the other datasets significantly increased
the detection capabilities for these other datasets. In comparison
to the US scenario, the BR scenario is more challenging as a base
scenario, thus it requires more data. It requires adding 35% of the
other datasets to achieve the 95% detection rate. In the end, all
scenarios achieved the 99% accuracy.

Classification Accuracy vs. Dataset Portion (Base=JP)

100 P e e e e e e e sy S T T Sy ——)
| R N IR ——”,_-—
95 Lo
/’.—_
-
< 90 -7
2 13
- [/
>
g 85f
3
3 I
< 8o/
[}
i
75 -— Us == JP
BR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)

Figure 19: Extending the existing JP model. Accuracy rates

on the different datasets for different portions of the source

datasets using random sample selection.

Figure 19 shows the accuracy rate when the JP model is enriched

with different portions of the US and BR datasets and it is used
to predict malware samples in these two datasets. This scenario
exhibits mixed characteristics between the BR and US scenarios.
Whereas it presents most of its growth with only 5% of the other
datasets, it also took a significant time to converge (50% of the
dataset to achieve 95%), like the BR scenario.
Global models are more efficiently built with confidence-
based sample selection than random sample selection.
Whereas the previously-presented strategy is already more effi-
cient than training from scratch, it is still not ideal, because it
considers all samples as contributing equally to the global model.
In reality, some samples contribute more than others and these
should be prioritized for fast learning. A prioritization strategy is
to check which samples are classified with less confidence by the
main classifier and send them to the global classifier. We evaluated
this strategy by repeating the previous experiment under this new
setting.

Cross-Regional Malware Detection via Model Distilling and Federated Learning

Classification Accuracy vs. Dataset Portion (Base=US)

100—_“ ——————————————— -
E=EsRci—fof—f—Z=F===+
1
o5{
/
< 1
€ 9ol
oy
g
=3
g 85
<
8 ——Us -— Jp
BR
75

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)
Figure 20: Extending the existing US model. Accuracy rates
on the different datasets for different portions of the source
datasets using confidence-based sample selection.

Figure 20 shows the accuracy rate increase when the US model is
enriched with samples from the BR and JP datasets selected by the
low confidence of the US classifier on detecting them. Like in the
previous scenario, most of the detection increase happens in the
first 5%, taking detection rates over to 90%. In this case, however,
adding another 5% (up to 10%) is enough to take the accuracy rate
closer to the 99% target. The accuracy rate is sustained for additional
portions of the dataset.

Classification Accuracy vs. Dataset Portion (Base=BR)

95 P ki
Py

20 25
o

Accuracy (%)
o
(0]

I ——Us -= JpP
BR

I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)

Figure 21: Extending the existing BR model. Accuracy rates

on the different datasets for different portions of the source

datasets using confidence-based sample selection.

Figure 21 shows the accuracy rate increase when the BR model
is enriched with samples from the US and JP datasets selected by
the low confidence of the BR classifier on detecting them. The
BR model also benefits from a confidence-based sample selection
strategy. Whereas in the random selection setting it takes 25% of
the other datasets to achieve the 90% accuracy rate, now this same
rate is achieved with only 10% of the datasets. The BR dataset has
been revealed challenging since it required a significant portion of
the datasets to be added to reach the 99% accuracy level. Despite
that, the overall result is considered positive because detecting
most samples earlier is positive by reducing the attack opportunity
window [8].

Figure 22 shows the accuracy rate increase when the JP model is
enriched with samples from the BR and US datasets selected by the
low confidence of the JP classifier on detecting them. The selection
strategy is revealed to be efficient as the JP model enriched with
only 10% of the samples from the other datasets is able to achieve the

RAID 2024, September 30-October 02, 2024, Padua, Italy

Classification Accuracy vs. Dataset Portion (Base=JP)

10— e === et
_____,:,—.-4:~__-——————"———"-"';‘."
1
95 ;
)
g
> 1
8 85 1
H]
8 /
< 80 7/
i’
B
75 ——Us == JP
BR

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Portion (%)
Figure 22: Extending the existing JP model. Accuracy rates
on the different datasets for different portions of the source
datasets using confidence-based sample selection.

99% accuracy rate for the US scenario. The BR was once again more
challenging, requiring ~ 15% of the dataset to pass the 90% level. The
JP scenario however once again presented convergence problems,
with the accuracy rates varying significantly until converging to
the target level.

4.4 Are real models trained from scratch?

In practice, models are not retrained, but distilled. We so far in-
vestigated the problem of retraining models in different conditions.
However, assuming that model retraining is always feasible is also
a common pitfall for realistic ML deployments. In reality, AV com-
panies might not be able to retrain their models from scratch due
to multiple reasons. For instance, they might not have the original
samples used to train the samples, but only the model parameters.
Therefore, in practice, multiple models are only derived from previ-
ous ones (i.e., distilled). To better understand the implications of
a model distillation process, we developed a series of experiments
employing the Teacher-Student (TS) distillation technique [20, 23],
where the labels of the original model were used to train the distilled
model. We started distilling the local models.

Classification Accuracy vs. Locally-Distilled Models (Teacher-Student)

Accuracy (%)
-3
)

861/ @ US -A JP
851/ BR

100 200 300 400 500 600 700 800 900
Features (#)
Figure 23: Self-Model Distilling. Number of features required
to achieve the maximum accuracy rate for the different
datasets.

Figure 23 shows the accuracy score variation according to the
number of features considered in the model for the case in which we
distill the original local models for each one of the three datasets into
new versions of them. We notice that effective model distillation is
possible, i.e., the distilled model can also achieve the targeted 99%

RAID 2024, September 30-October 02, 2024, Padua, Italy

accuracy score. However, it comes at the cost of some extra features.
It required 10 (290 to 300), 60 (340 to 400), and 100 (800 to 900)
additional features to make the US, BR, and JP datasets converge
to the target accuracy. This increase is explained by the loss of
accuracy caused by considering the labels provided by the trained
model and not by the ground truth ones. This loss of accuracy must
be compensated with additional data. Therefore, there is also a
trade-off between the model accuracy and the model size in the
distillation procedure.
Distilled models are bigger than retrained models. Consider-
ing that models can be built via distillation is important to report
accurate results about models’ sizes. As the challenges to distilling a
model might be different than to building from scratch, the number
of features required by the models might be different. To evaluate
that, we extended our evaluation from distilling local models to lo-
cal models to distill the global model from the previous experiments
into multiple local models.

Classification Accuracy vs. Globally-Distilled Models (Teacher-Student)

100

99 /D--@--*--Q--W—-W--‘D———A
98 -
97 Q——@‘""’—W

. 9 !

& o954+

§ 93 H

o 921 1

< orfs
901 1
891/ -@ Us -A JP
881 BR

g7 h
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Features (#)
Figure 24: Global to Local Model Distilling. Number of fea-
tures required to achieve the maximum accuracy rate for the
different datasets.

Figure 24 shows the accuracy rate for different feature sets for
the three datasets. As the curves overlap, we added markers to
them to highlight the differences. We notice that distilling a global
model to a local model requires much more features than self-
model distillation. This happens because the errors in the labels
of all samples are accumulated, which requires more data to be
fixed. In the long term, all local models converged to the target
99% accuracy score when applied to their local scenarios, but they
took a different number of features for that. The global US model
converged with 1000 features, when it stopped being displayed in
the graph. The JP dataset converges with 1200 features, when it
stops being displayed in the graph. The BR dataset was once again
the most challenging one, requiring 1500 features until converging.
The feature set size for the distilled models varies with the
dataset proportion. The previously shown effects of model re-
building via distilling are not the only ones affecting model con-
struction in reality. The effects of partial global model construction
via FL also play a key role. Therefore, it is key to evaluate these two
effects in conjunction to not report inaccurate feature set sizes. The
addition of different dataset portions makes the feature selection
problem dynamic, such that we should understand how the feature
requirement progresses. We here investigate how ideal feature size
varies by repeating previous experiments with different proportions
of the source datasets.

Botacin adn Gomes

Ideal Feature Set Size vs. Dataset Portion (Teacher: lent)

1800
1700 o= = = = e = o e - —————— /‘ —————————— N
\ AN
1600 {— === —————=— A NI T A
— P ~ ~
E1500{————————— - A S |
2 \| AT 1N
£ 1400 { = ===~ < e e N
® S~e L7 AN
2 1300 S % \\\
/
12001 == Global/us === US/BR BR/JP / \\ N
Global/BR == US/JP === JP/US // \
1100 { == Global/JP BRIUS === JP/BR et o o o b o o e -
== US/US === BR/BR JP/JP
1000
65 70 75 80 85 90 95 100

Dataset Portion (%)

Figure 25: Global to Local Model Distilling. Variation on the
number of features required to achieve the maximum accu-
racy rate for different portions of the source datasets.

Figure 25 shows how the number of features required to reach
the target accuracy varies with the portion of the datasets that
are used to train multiple classifiers via distillation. We report the
results both for the distilling of the local and global models and
their application to multiple local scenarios. Whereas there is some
initial stability, we notice that the maximum number of features
for each scenario varies significantly, with a tendency to decrease
when the full dataset is used, since more data is available. This
variation suggests that the adoption of a dynamic distilling strategy
is desirable. Although it would be possible to identify a larger
number of features that would cover all scenarios (1700) and keep
the feature set size constant, it would not be ideal performance-
wise, since it requires traversing much more nodes than needed in
some scenarios (e.g., 1100), making the prediction process slower.

4.5 What is the real impact of ML on AVs?

The performance impact of different feature set sizes is bigger
in actual rules than in the ML models. The impact of selecting
a different number of features is highlighted when we consider the
detection task in endpoint machines. A common assumption of
most papers in the literature is that the local model will be directly
used in the end user machine (i.e., the AV), but this is not the
common case in practice. Most AVs deploy rules as their matching
mechanisms [10]. The use of model-derived rules rather than the
actual models can be motivated by multiple reasons: (i) do not
reveal the entire model; (i) make human interpretation easier; (iii)
mitigate FPs by removing individual rules; and (iv) making updates
faster by deploying only new rules rather than an entire model.
Thus, we should evaluate the impact of different feature set sizes
on the performance by inspecting the rules.

The rules can be directly derived from the local model by travers-
ing the decision tree. We used this strategy to derive YARA [38]
rules, the industry standard for pattern matching, from the model.
Whereas the difference in the matching time of a rule on a sin-
gle file is small, the accumulated time for scanning a large set of
files might be significant. Thus, we simulated this scenario in our
experiment. We distributed all malicious files that the model was
expected to detect (the same used in the ML experiment) over the
entire filesystem of a fresh Windows 10 installation. In total, we
asked YARA to scan 127GB of data in this system, simulating a full
system scan by an AV. All YARA rules were precompiled to avoid

Cross-Regional Malware Detection via Model Distilling and Federated Learning

the compilation overhead and were run in the same Intel 17, 20 core,
8GB system. The number and complexity of the matching rules
varied with the number of features, as detailed in Appendix A. On
average, 900 rules of 25 levels of depth were considered.

Table 2 shows the total matching time for the set of rules derived
from the models using different feature set sizes. Our goal is to
motivate the use of smaller models for the scenarios that allow
it rather than standard large models for all scenarios. The results
show that the overhead caused by using larger and increasingly
complex rules is significant. Using a standard feature set of 1700
features is 40% slower than using a minimal set of 1100 features (for
the scenario where it is possible). This 40% overhead represents an
additional 5m36s in the matching for the simulated scenario. This
result highlights the benefits of a feature-aware distill schema.

5 CASE STUDY: TEMPORAL EVALUATION

Once we explored the impact of different model settings on the
multiple datasets, we now evaluate how the proposed new setting
would help increase malware detection in a more realistic scenario.
To do that, we evaluate malware detection as a time series, as new
samples appear over time, and not in a single batch. Thus, we
ordered the samples in the three datasets by the “first seen” date
in Virustotal [39], as done by related work [12]. The datasets we
had access to were imbalanced in time, thus we were not able to
provide a comparison of the whole year. However, the datasets are
reasonably balanced in the second semester of the year. Thus, we
split the dataset in two, training with the first half of the year (~50%
of samples) for each dataset, and predicting the next six months of
the year (normalized to 980 samples per month per dataset).

100 D: ion Rate over Time (No Update)

L N A e R B
Y I S S I S R
5 90 -
®
4
c 85
2
g
5 80
a

75

——Us BR —= JP
70
1 2 3 4 5 6
Time (Month)

Figure 26: Detection rate as a time-series for the individual
static models. Previously trained classifiers attempt to detect
new threats. Performance degradation due to concept drift
is observed.

In the first experiment, each classifier was trained with the best
set of features for the training step (500 for US, 300 for BR, and 800
for JP). The same set of features was kept during the whole year.
Figure 26 shows the detection rate for the three datasets in the six
months of the second semester of the collection year. We notice that
each dataset presents a distinct detection rate, according to their
samples’ characteristics. In this experiment, the BR samples were
the hardest to classify, which is in line with the reports of previous
works on the particularities of BR malware [7]. It is possible to
notice a clear degradation in the detection performance of the BR
classifier over time, indicating the occurrence of concept drift. While

RAID 2024, September 30-October 02, 2024, Padua, Italy

our experiment is of reduced scale, it is in line with literature reports
about the frequent occurrence of concept drift in BR malware [15].
The typical strategy to handle concept drift occurrences is to
retrain the classifier when drift occurs. We simulated this scenario
by detecting drift via the Early Drift Detection Methods (EDDM) [3].
We allowed the feature extractor to be retrained as well since previ-
ous research demonstrated it leads to better results [12]. It implies
that the number of features used by the classifiers varied over time
(but never got larger than 800), being optimal at every retraining.

100 D ion Rate over Time (Drift D ion)

[L S s
g ________________________________
S 90 ——t-
]
@
c 85
2
°
< 80
a

75

—= Us BR == JP
70
1 2 3 4 5 6
Time (Month)

Figure 27: Detection rate as a time-series for the individual,
drift-aware models. The retraining of models when concept
drift is detected takes the detection rate back to its original
level.

Figure 27 shows the detection rates when retraining on drift de-
tection is in place. We notice that the BR detector does not degrade
its performance anymore. Also, we notice that a drift point was
identified for the US curve in the fourth month. No concept drift
occurrence was detected for the JP scenario. As a drawback of this
strategy, the detection rates did not increase from their original
levels even with retraining.

A hypothesis for that is that whereas retraining on drift detection
allows reorganizing the feature importance distribution, it does not
add new information, which can only be added externally to the
local models. To evaluate that, we considered our proposition of
training a global model and distilling local versions. The global
model was initially trained with all samples of the 3 countries for
the first semester. Later, different models were distilled every month,
considering the ideal feature set size for each scenario (ranging
from 1100 to 1500), as previously discussed. The global model is also
updated every month with the samples from the previous months.

Figure 28 shows the detection results for the scenario with global
model distillation to local models. We notice that, like in the previ-
ous scenario, drift events are mitigated by the periodic distill, which
is equivalent to model retraining. However, unlike the previous
scenario, the detection rates are at a higher level due to the sharing
of data between the datasets. Whereas the BR malware samples
remain harder to detect due to their unique characteristics, their
difference from the other scenarios is much smaller in this case.

The main takeaway for this experiment is that whereas retrain-
ing on drift detection mitigates the performance degradation, only

federated learning actually increases detection rates. A derived

takeaway is thatthe increased detection rate of distilled global mod-
els comes at the cost of an additional number of features.

RAID 2024, September 30-October 02, 2024, Padua, Italy

Botacin adn Gomes

Table 2: Matching performance. Wall time (s) for matching Yara rules derived from ML models of different feature sets sizes

against a real, infected filesystem.

Features 1100 1200 1300
Time 13m57s 14mo00s (+0.3%) 14mO05s (+1%)

1400 1500 1600 1700
14m50s (+6%)

15m57s (+14%) 17m58 (+29%) 19m33s (+40%)

100 D ion Rate over Time (FL Retraining)
- -
95 —-=======----===-——--===------ -
S
S 90
©
-3
c 85
2
8
e 80
a
75
—=Us BR == JP
70
1 2 3 2 5 .
Time (Month)

Figure 28: Detection rate as a time-series for the globally-
distilled models. The use of data from a global model not only
mitigated the drift effects but also increased the detection
rate for all datasets.

6 DISCUSSION

Impact on Threat Models. Our work tackles the problem of mal-
ware detection in heterogeneous scenarios. We are not the first to
claim that different scenarios require different solutions. In this
sense, our contribution is to explicit what are the types of differ-
ences observed in analyzing heterogeneous datasets. We use the
identified requirement for a different number of features per dataset
to motivate the adoption of an ensemble of heterogeneous trees.
Impact on Federated Learning. When we demonstrate (i) the
need for specifically considering the heterogeneity of geographi-
cally distributed malware and (ii) the need for integrating individual
knowledge for increased detection rates, we are also (i) pinpointing
the trade-off between local and global instances, and (ii) the need
for designing architectures that balance these factors. Our key con-
tribution is to notice that we do not need to design a completely
new solution for that, but we can achieve this goal by taking a
different look at federated learning, by considering as clients of the
global models the local AV subsidiaries and not the endpoints.

FL without poisoning risks. Our proposal for the adoption of FL
comes along with the idea of distributing the AV operation. Our
proposal does not cause a paradigm shift in the way AV companies
operate but implies in the replication of the AV operation model
into multiple subsidiaries. When we move the FL client from the
endpoint device to the local AV subsidiary model, we increase the
trust level the global AV model has in the data it receives in compari-
son to directly receiving data from an endpoint device. In our threat
model, although the malware files are sourced from the endpoint
devices (as in all AVs [10]), they are not directly incorporated into
the local or global models, but curated by the local AV subsidiary
via their analysts (as in typical AV operations [29]). Therefore, a
collusion of endpoints at a single subsidiary would not be able to
poison the model. Poisoning the global models would only be possi-
ble via collusion of subsidiary models, which is out of the assumed
threat model of an AV company trusting its subsidiaries.

Why are malware samples regionally different? To lead to an
effective infection, malware campaigns must be meaningful to the
victim’s context (e.g., use known languages, known topics, known
companies, and so on). The types of assets affected by malware
samples also only make sense to an attacker if the attacker have
access to them (e.g., same payment methods, same banks, same cur-
rency, and so on). Therefore, malware samples are naturally shaped
by the population they target. Previous work has demonstrated,
for instance, how the ecnomic development of Brazil has led to
particular types of malware [7], such as a proliferation of custom
banking samples due to the unique payments methods developed
in this country [11]. This phenomenon is reflected in this research,
whose BR dataset has filetypes (e.g., CPL) unique to it.

How are the features affected by the regional differences?
The pointed contextual differences shape the technical decisions
made by the malware creators and thus affect the way malicious
behaviors are implemented. This is reflected in the detection of
samples. Previous research has shown that due to the local differ-
ences BR samples are less detected by AVs than global samples [38]
and that BR malware also causes more classifiers drifts [15]. The
contextual difference in our study is that while the BR scenario was
targeted by data exfiltration (e.g., banking) malware, the US and
JP datasets were mroe targeted by ransomware. If we look to the
most discriminative feature for each scenario, we notice that the
top-10 most discriminative feature for the BR dataset are network
functions and for the US and JP datasets are filesystem functions,
exactly what one would hypothesize for scenarios dominated by
data exfiltrators and ransomware samples.

Will malware remain regionalized in the future? It is key to
highlight that although our datasets are representative of the BR,
US, and JP scenarios by that time, these datasets are not representa-
tive of the current threat scenario, which is very dynamic. However,
we understand that our work is permanentely relevant as contex-
tual differences between the countries will also be permanent. Since
the technical design decisions are coupled to the contextual dif-
ferences, any operation in heterogeneous scenarios will present
significant differences in the feature requirements, as here exempli-
fied. However, instead of the difference between data exfiltrators
and ransomware, different malware families are expected according
to the scenario’s developments.

Generalization Limitations. We selected for our experiments a
coherent set of malware examples: they are collected by the same
company, during the same period, from the same type of users (in-
fected machines). However, we acknowledge that these datasets are
only a small fraction of all threats that exist out there, although this
is the best representation presented to the moment in comparison
to the literature works. Thus, we do not claim that the statistics
obtained from the experiments with these samples will generalize
for all scenarios or over time. Instead, we limit our claims to demon-
strate that it is possible to find in the reality scenarios in which
the problem addressed in this research is of actual impact. For the

Cross-Regional Malware Detection via Model Distilling and Federated Learning

future, it is key to conduct a large-scale study to answer the ques-
tions derived from our observations and their generalization for
multiple datasets over time. At the present, we evaluate the gener-
alization of our claim that heterogeneous datasets inherently cause
classification impact via the experiments presented in Appendix B.

7 RELATED WORK

Realistic Malware Detection Pipelines. Recent works point out
that ML-based detectors need to be more practical [14] and present
more realistic assumptions in their evaluations [1]. Previous work
addressed issues such as improper dataset imbalances [31]. We
complement them by considering performance requirements.
Concept Drift issues have been addressed in multiple works [4,
12, 22, 32]. However, none of them considered the effect of simulta-
neous heterogeneous datasets, as in this work.

Model Distillation. Whereas the distill of Random Forest (RF) has
been proposed in the past in the literature [23], our contribution
here is to build the ensemble tree in a way that favors direct distil-
lation. Previous distillation works focused on creating models that
are stronger against adversaries [21], but not necessarily suitable
for easy distillation. Also, whereas previous works observed that
distilled models might have a mix of characteristics [33], they did
not explore it to handle the differences in regional datasets.
Federated Learning. Whereas previous works suggested that AV
companies could benefit from FL [18], this idea was never com-
pletely developed. Also, their focus is often on keeping users’ data
external to some company environment, whereas our scenario is
internal to the AV company. A key difference from previous works
is that whereas most literature works propose models to be run in
the edge devices [25, 28], we take the performance constraints into
consideration and propose the FL to be run inside the AV company
infrastructure. The agents of the FL process are the AV company
subsidiaries, not the users. This solves this risk of poisoning asso-
ciated with FL [17, 37]. Whereas in client-side FL the dataset can
be poisoned by a set of malicious actors, in our scenario the clients
are trusted because they are internal to the AV company.
Combining FL and Distilling. Whereas combining the two tech-
niques has been proposed for other domains [24], this is the first
use for malware detection. Whereas previous works distilled an
ensemble into another [26], we propose building a heterogeneous
ensemble to facilitate single-tree distillation.

Adaptive Classifiers. Random Forest modifications have been
proposed in the past [19], but only a few works modified RF for
easing model distilling. The closest proposal to it was the creation of
heterogenous RF with different features per tree [2]. We here sorrt
the RF trees by an incremental number of features (with overlap
with the previous ones) which allows easy model distills steps.
Classification Performance Trade-Offs. This work sheds light
on ML performance. Although large models tend to present greater
detection rates, they also tend to be too big to run in edge de-
vices [40]. Thus, finding a good trade-off between model size and
accuracy is key. A typical strategy for that is to partition the models
into cloud and edge versions [36], a strategy also leveraged in this
work. However, whereas the typical trade-off is in the number of
trees [16], we here approached it also in the number of features.

RAID 2024, September 30-October 02, 2024, Padua, Italy

8 CONCLUSION

We investigated how malware detection pipelines proposed in the
literature often do not consider the challenges involved in the actual
operation in heterogeneous scenarios, such as that: (i) the ML model
that runs in a client machine is different from the model that runs
in an AV company backend; and (ii) datasets of malware samples
collected in different regions of the world present different detec-
tion requirements in terms of model complexity. We evaluate the
impact of overlooking these aspects by modeling a ML-based mal-
ware detection pipeline to be applied to 3 datasets of 10K malware
samples each collected in the same period of time in three different
countries: USA, Brazil, and Japan. We show that (i) the ideal model
for each scenario requires a different number of features; (ii) in-
creasing the model size does not lead to significant detection gains;
and (iii) integrating data from all the scenarios in a global model
indeed raises the detection rates for all datasets. We proposed the
use of FL in combination with model distilling to build the global
dataset. Unlike previous proposals, our FL approach is run inside
the AV company, and not on the endpoints. Also, we modified the
RF algorithm to use a heterogeneous number of features in its en-
semble, thus favoring the distillation of different models. We expect
this work to foster further research on cross-regional malware.

Reproducibility. All developed codes for this research is available
at: https://github.com/marcusbotacin/Malware.Federated.Distill

ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for all the helpful
insights. Marcus Botacin thanks NSF for the support via the CNS
2327427 grant. Heitor Gomes thanks the Marsden Fund for the
award number VUW?2213.

REFERENCES

[1] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos
and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 3971-3988.
https://www.usenix.org/conference/usenixsecurity22/presentation/arp

[2] Mohamed Bader-El-Den. 2014. Self-adaptive heterogeneous random forest. In
2014 IEEE/ACS 11th International Conference on Computer Systems and Applications
(AICCSA), Vol. 1. IEEE, Qatar, 640-646. https://doi.org/10.1109/AICCSA.2014.
7073259

[3] Manuel Baena-Garcia, José Campo-Avila, Raiil Fidalgo-Merino, Albert Bifet, Ri-
card Gavald, and Rafael Morales-Bueno. 2006. Early Drift Detection Method.
Fourth International Workshop on Knowledge Discovery from Data Streams 1 (01
2006), 1.

[4] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending TRANSCEND: Revisiting Malware Classification in the
Presence of Concept Drift. In 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, US, 805-823. https://doi.org/10.1109/SP46214.2022.9833659

[5] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. MOA:
Massive Online Analysis. Journal of Machine Learning Research 11, 52 (2010),
1601-1604. http://jmlr.org/papers/v11/bifet10a.html

[6] Marcus Botacin. 2021. Does Your Threat Model Consider Country and Culture?
A Case Study of Brazilian Internet Banking Security to Show That It Should!. In
USENIX Enigma. USENIX Association, USA, 1.

[7] Marcus Botacin, Hojjat Aghakhani, Stefano Ortolani, Christopher Kruegel,
Giovanni Vigna, Daniela Oliveira, Paulo Licio De Geus, and André Grégio.
2021. One Size Does Not Fit All: A Longitudinal Analysis of Brazilian Finan-
cial Malware. ACM Trans. Priv. Secur. 24, 2, Article 11 (jan 2021), 31 pages.
https://doi.org/10.1145/3429741

[8] Marcus Botacin, Fabricio Ceschin, Paulo de Geus, and André Grégio. 2020. We
need to talk about antiviruses: challenges & pitfalls of AV evaluations. Computers
& Security 95 (2020), 101859. https://doi.org/10.1016/j.cose.2020.101859

[9] Marcus Botacin, Fabricio Ceschin, Ruimin Sun, Daniela Oliveira, and André
Grégio. 2021. Challenges and pitfalls in malware research. Computers & Security

https://github.com/marcusbotacin/Malware.Federated.Distill
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1109/AICCSA.2014.7073259
https://doi.org/10.1109/AICCSA.2014.7073259
https://doi.org/10.1109/SP46214.2022.9833659
http://jmlr.org/papers/v11/bifet10a.html
https://doi.org/10.1145/3429741
https://doi.org/10.1016/j.cose.2020.101859

RAID 2024, September 30-October 02, 2024, Padua, Italy

[10]

[11]

[12]

[13]

[14]

(15

[16

[17]

[18

[19

[20

[21]

[22]

[23]

[24

[25]

[26]

[27

106 (2021), 102287. https://doi.org/10.1016/j.cose.2021.102287

Marcus Botacin, Felipe Duarte Domingues, Fabricio Ceschin, Raphael Machnicki,
Marco Antonio Zanata Alves, Paulo Licio de Geus, and André Grégio. 2022.
AntiViruses under the microscope: A hands-on perspective. Computers & Security
112 (2022), 102500. https://doi.org/10.1016/j.cose.2021.102500

Marcus Botacin, Anatoli Kalysch, and André Grégio. 2019. The Internet Banking
[in]Security Spiral: Past, Present, and Future of Online Banking Protection Mech-
anisms based on a Brazilian case study. In Proceedings of the 14th International
Conference on Availability, Reliability and Security (Canterbury, CA, United King-
dom) (ARES °19). Association for Computing Machinery, New York, NY, USA,
Article 49, 10 pages. https://doi.org/10.1145/3339252.3340103

Fabricio Ceschin, Marcus Botacin, Heitor Murilo Gomes, Felipe Pinagé, Luiz S.
Oliveira, and André Grégio. 2023. Fast & Furious: On the modelling of malware
detection as an evolving data stream. Expert Systems with Applications 212 (2023),
118590. https://doi.org/10.1016/j.eswa.2022.118590

Fabricio Ceschin, Marcus Botacin, Gabriel Liiders, Heitor Murilo Gomes, Luiz
Oliveira, and Andre Gregio. 2021. No Need to Teach New Tricks to Old
Malware: Winning an Evasion Challenge with XOR-Based Adversarial Sam-
ples. In Reversing and Offensive-Oriented Trends Symposium (Vienna, Austria)
(ROOTS’20). Association for Computing Machinery, New York, NY, USA, 13-22.
https://doi.org/10.1145/3433667.3433669

Fabricio Ceschin, Heitor Murilo Gomes, Marcus Botacin, Albert Bifet, Bernhard
Pfahringer, Luiz S. Oliveira, and André Grégio. 2020. Machine Learning (In)
Security: A Stream of Problems. https://doi.org/10.48550/ARXIV.2010.16045
Fabricio Ceschin, Felipe Pinage, Marcos Castilho, David Menotti, Luiz S. Oliveira,
and Andre Gregio. 2018. The Need for Speed: An Analysis of Brazilian Malware
Classifiers. IEEE Security & Privacy 16, 6 (2018), 31-41. https://doi.org/10.1109/
MSEC.2018.2875369

Lingling Fan, Minhui Xue, Sen Chen, Lihua Xu, and Haojin Zhu. 2016. POSTER:
Accuracy vs. Time Cost: Detecting Android Malware through Pareto Ensemble
Pruning. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). Association for Computing
Machinery, New York, NY, USA, 1748-1750. https://doi.org/10.1145/2976749.
2989055

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model
poisoning attacks to {Byzantine-Robust} federated learning. In 29th USENIX
security symposium (USENIX Security 20). USENIX, US, 1605-1622.

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen
Mollering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas
Schneider, Hossein Yalame, et al. 2021. SAFELearn: Secure aggregation for
private federated learning. In 2021 IEEE Security and Privacy Workshops (SPW).
IEEE, US, 56-62.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck,
Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. 2017. Adaptive
random forests for evolving data stream classification. Machine Learning 106
(2017), 1469-1495.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. 2021. Knowl-
edge Distillation: A Survey. Int. . Comput. Vision 129, 6 (jun 2021), 1789-1819.
https://doi.org/10.1007/s11263-021-01453-z

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2017. Adversarial examples for malware detection. In Computer
Security—ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22. Springer,
Norway, 62-79.

Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift
in Malware Classification Models. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 625-642. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
Sangwon Kim, Mira Jeong, and Byoung Chul Ko. 2022. Lightweight surrogate
random forest support for model simplification and feature relevance. Applied
Intelligence 52, 1 (2022), 471-481.

Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via
model distillation. arXiv preprint arXiv:1910.03581 1 (2019), 1.

Kuang-Yao Lin and Wei-Ren Huang. 2020. Using Federated Learning on Malware
Classification. In 2020 22nd International Conference on Advanced Communication
Technology (ICACT). IEEE, South Korea, 585-589. https://doi.org/10.23919/
ICACT48636.2020.9061261

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. Advances in Neural
Information Processing Systems 33 (2020), 2351-2363.

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. In Proceedings of the 34th
International Conference on Neural Information Processing Systems (Vancouver,
BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 198,
13 pages.

Botacin adn Gomes

[28] Arvind Mahindru and Himani Arora. 2022. Dnndroid: Android malware detection
framework based on federated learning and edge computing. In International Con-
ference on Advancements in Smart Computing and Information Security. Springer,
India, 96-107.
Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Performance
Measurement for Malware Detection. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment -
Volume 9721 (San Sebastian, Spain) (DIMVA 2016). Springer-Verlag, Berlin, Hei-
delberg, 122-141. https://doi.org/10.1007/978-3-319-40667-1_7
MOA. 2017. AdaptiveRandomForest. https://moa.cms.waikato.ac.nz/adaptive-
random-forest/.
Borja Molina-Coronado, Usue Mori, Alexander Mendiburu, and Jose Miguel-
Alonso. 2023. Towards a fair comparison and realistic evaluation framework
of android malware detectors based on static analysis and machine learning.
Computers & Security 124 (2023), 102996. https://doi.org/10.1016/j.cose.2022.
102996
Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-
ware Classification across Space and Time. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 729-746.
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
[33] Hemant Rathore, Adithya Samavedhi, Sanjay K Sahay, and Mohit Sewak. 2021.
Robust malware detection models: learning from adversarial attacks and defenses.
Forensic Science International: Digital Investigation 37 (2021), 301183.
[34] scikit learn. 2020. Machine Learning in Python. https://scikit-learn.org/stable/.
[35] scikit learn. 2020. SelectKBest. https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.SelectKBest.html.
[36] Tianyi Shen, Cyan Subhra Mishra, Jack Sampson, Mahmut Taylan Kandemir,
and Vijaykrishnan Narayanan. 2022. An Efficient Edge-Cloud Partitioning of
Random Forests for Distributed Sensor Networks. IEEE Embedded Systems Letters
1,1(2022), 1-1. https://doi.org/10.1109/LES.2022.3207968
Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data poi-
soning attacks against federated learning systems. In Computer Security—-ESORICS
2020: 25th European Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14-18, 2020, Proceedings, Part I 25. Springer, UK, 480-501.
[38] VirusTotal. 2016. The pattern matching Swiss knife. https://github.com/
VirusTotal/yara.
[39] Virustotal. 2023. Virustotal. https://www.virustotal.com/gui/home/upload.
[40] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yanggqing Jia, Bill Jia, Tommer Leyvand,
Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch,
Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran
Xian, Sungjoo Yoo, and Peizhao Zhang. 2019. Machine Learning at Facebook:
Understanding Inference at the Edge. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, USA, 331-344. https:
//doi.org/10.1109/HPCA.2019.00048

[29

@
=

[31

[32

'S
=

A DERIVING YARA RULES FROM ML MODELS

Most works in the literature tend to complete their evaluations at
the ML model level. However, in practice, AV companies do not
use the models directly in the end users’ machines, but to derive
rules that will be deployed in the endpoints. There are important
differences between ML models and the rules and there are phe-
nomenons that can only be observed at the rule level. Therefore,
we took a step further and generated the rules from the model for
evaluation purposes. We here characterize the derived rules and
point out important facts about their nature to bridge the gap in the
literature about the application of rules derived from ML models.

YARA rules. Rules can be derived from a tree-based model (e.g.,
RF or DT) by traversing all paths of the tree and aggregating the
node conditions. If all conditions are satisfied (logic AND), the rule
matches. The paths can be represented via multiple frameworks. In
this work, we chose YARA, for two reasons. First, because it is the
de-facto standard, used by many security products, which gives us
realistic results. Second, it natively supports the PE format. Since
our features are PE entities, they can be directly mapped to YARA

https://doi.org/10.1016/j.cose.2021.102287
https://doi.org/10.1016/j.cose.2021.102500
https://doi.org/10.1145/3339252.3340103
https://doi.org/10.1016/j.eswa.2022.118590
https://doi.org/10.1145/3433667.3433669
https://doi.org/10.48550/ARXIV.2010.16045
https://doi.org/10.1109/MSEC.2018.2875369
https://doi.org/10.1109/MSEC.2018.2875369
https://doi.org/10.1145/2976749.2989055
https://doi.org/10.1145/2976749.2989055
https://doi.org/10.1007/s11263-021-01453-z
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://doi.org/10.23919/ICACT48636.2020.9061261
https://doi.org/10.23919/ICACT48636.2020.9061261
https://doi.org/10.1007/978-3-319-40667-1_7
https://moa.cms.waikato.ac.nz/adaptive-random-forest/
https://moa.cms.waikato.ac.nz/adaptive-random-forest/
https://doi.org/10.1016/j.cose.2022.102996
https://doi.org/10.1016/j.cose.2022.102996
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://doi.org/10.1109/LES.2022.3207968
https://github.com/VirusTotal/yara
https://github.com/VirusTotal/yara
https://www.virustotal.com/gui/home/upload
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048

Cross-Regional Malware Detection via Model Distilling and Federated Learning

rules as the paths are traversed. When using it, each traversed path
results in a new rule.

" "

import "pe

rule rule_from_ml_o {

1

2

3

4 condition:

5 pe.imports(/(.).dl1/i, /closehandle/i)
6 and

7 pe.characteristics & pe.EXECUTABLE_IMAGE
8 and

9 pe.exports(/dllunregisterserver/i)

Code 1: Yara rule generated from the ML model.

Code 1 exemplifies a YARA rule generated from traversing one
ML model path. The rule relies on the support for PE files (line 1) to
match all conditions (lines 4 to 6) via logic ANDs. The rule matches
different types of features. It checks (1) if the scanned file imports
a given API function (line 4); (2) if the binary image has specific

characteristics (line 5), and (iii) if the binary exports a given symbol.

All checks are case-insensitive (/i),

The number of rules. Since each traversed path results in a new
rule, it is plausible to hypothesize that when using more features
in the model, more rules are generated, since more features are
available to be matched. To test this hypothesis, we generated rules
from the models using the diverse number of features identified in
the previous experiments.

1800 Number of Rules vs. Number of Features (Global-Distilled)

1700 g ==
1600
1500
1400
% 1300
3, 1200
Q
2 1100
10001 e
900 1= = e o T —————
800
700
600 === Malware

500
1100 1200 1300 1400 1500 1600 1700

Features (#)

Goodware === Total

Figure 29: Number of rules vs. feature size. The number of
generated rules moderately increases with the number of
features.

Figure 29 shows the number of totals, malware, and goodware
rules generated from the models of different feature set sizes. Our
first observation is that the number of features in the model indeed
has an impact on the number of generated rules (100 new rules
were generated). However, this impact is moderate (100 new rules
represent 6% of all rules).

Our second observation is that the total number of rules is not
an appropriate proxy for the model complexity because, in the case
of a binary problem, the model generates tree branches, thus rules,
covering both classes. In practice, however, the AV does not verify
the benign samples but only checks for the malicious ones, such
that rules should be generated only for the malware class.

Our final observation is that there is not an equal number of
malware and goodware rules, regardless of the feature set sizes. The
model generates more paths for the malware ones, which indicates
that these are more complex to classify.

RAID 2024, September 30-October 02, 2024, Padua, Italy

The complexity of the rules. Another plausible hypothesis is
that the number of features in a model affects the complexity of
the model, i.e., there are more features in each path, which requires
more checks to be performed, thus increasing the matching time.
We repeated the experiments to evaluate how many comparisons
there are in the paths of the rules generated from each model.

33 Rules Depth vs. Number of Features (Global-Distilled)

32 s

[
= ——
2530 P

£29 -

Ezs e

827 -

2 26 7
25 -,

247 == Malware

Zio0 1200 1300 1400 1500 1600 1700
Features (#)
Figure 30: Rules depth vs. feature size. The average depth of
the rules increases with the number of features.

Figure 30 shows the average number of comparisons in the set of

malware rules derived from each model. It is noticeable that increas-
ing the number of features in the model significantly increases the
complexity of the rules (from 24 to 33), which on average makes the
matching slower. Therefore, the performance overhead observed
in the conducted experiments is explained in a minor part by the
addition of more rules and to a larger extent by the rules becoming
more complex with an increased number of features.
The average coverage of the rules. A desirable characteristic of
ML models in comparison to byte-based signatures is generalization.
The same model can detect multiple samples, reducing the rule
storage requirements, and the number of rules to be matched, thus
increasing the performance of the security application. Ideally, this
same property should be achieved for the rules derived from the
model. Although the YARA framework can be used for byte-based
pattern matching, it can be used also to match broader rules that
generalize more. We repeated the experiments to evaluate how
many samples are covered (i.e., detected) by each derived rule.

Rule Coverage vs. Number of Features (Global-Distilled)

25
24 ~
PR
~—~ /,
&
~23 - ——
8 //\\ //’
=3
£ V4 AN P
G 22 P
] / S -
7/ N -
4 N L7
21y as
=== Malware
20
1100 1200 1300 1400 1500 1600 1700

Features (#)

Figure 31: Rules coverage vs. feature size. The average num-
ber of samples covered by each rule moderately increases
with the number of features.

Figure 31 shows the average number of samples identified via
each rule. The rules indeed generalize to multiple samples. Identify-
ing more than 20 samples with a single rule significantly contributes

RAID 2024, September 30-October 02, 2024, Padua, Italy

to reducing the storage requirement by this same magnitude. The
number of samples covered increased by a little with an increase
in the number of features (from 21 to 24), which is not enough to
cause a significant impact on thousands of samples. This finding
reinforces the previous point about the performance being mainly
impacted by the rules’ complexity rather than number.

The maximum coverage of the rules. In addition to the average
case previously discussed, the matching rules also present inter-
esting corner cases. One of them is when the same rule matches a
significant number of files. This is desired by the AVs as a way to
detect malware variants. We repeated the experiments to identify
if the number of features affect the maximum coverage.

cluster size vs. ber of Features (Global-Distilled)

3500
3400 I\\ == Malware
3300 /

3200\ /N

3100 / \

£30001 ’ \

92900 7 \

@ 280071 7 \

5 2700 \ 7 \

G 2600 \ 7 \

S 2500 \ / \
2400 \ 7 *
2300 \ S
2200 - ~
2100 N &
2000

1100 1200 1300 1400 1500 1600 1700
Features (#)

Figure 32: Rules maximum coverage vs. feature size. The
maximum coverage significantly varies over time, with no
direct relation to the feature set size.

Figure 32 presents how many samples are covered by the rule

of maximum coverage for the different feature set sizes. We notice
that the rules of maximum coverage are very efficient, allowing the
match of thousands of samples with the same rule, thus leading
to significant storage and performance gains. We notice also a
significant variation with feature size increase (from 2000 to 3400
samples). However, the variation is not coherent, i.e., it does not
sustain over time. It happens because the new features do not
necessarily make rules to generalize more, but they cause the trees
to split, such that in the cases in which the maximum coverage
decreased, it happened because the maximal rule was split into two
similar ones with the difference of a few features.
The minimum coverage of the rules. Another relevant corner
case is when the rules fail to generalize and are able to detect a single
sample (singletons). This happens, for instance, when a sample is
hard to classify and thus it requires additional features that are not
required by any other one to be matched. In this case, although the
rule was produced by a ML model, the scenario is somehow similar
to the individual signatures previously generated by the AVs.

Figure 33 shows the number of singleton rules for the different
feature set sizes. Once again, there is no coherent trend, with a sig-
nificant variation. The number of singletons is significantly smaller
than the number of the samples covered by the maximal rule (300
vs. 3000). This highlights the fact that the majority of the samples
are covered by the average rules.

B GENERALIZATION EVALUATION

This work aims to shed light on the impact of heterogeneous
datasets on malware detection. Our key claim is that datasets from

Botacin adn Gomes

Clusters vs. Number of Features (Global-Distilled)

380
370 A
360 /N RN

£350 4 \ - N

14
g 340 / \ 7 N
3
S330¢ N ,
320 \ .,

~ /
310 S 7 == Malware
~
300 A
1100 1200 1300 1400 1500 1600 1700
Features (#)

Figure 33: Number of Singletons vs. feature size. The number
of singleton clusters significantly varies over time, with no
direct relation to the feature set size.

different regions have inherently different patterns requiring spe-
cialized handling. To demonstrate that, it is key to show that the
effect happens independently of the type of detector. We here com-
plement experiments presented in the main text with experiments
showing the impact on different detector settings.

B.1 Varying Feature Selectors

The number of features required to detect 99% of the samples in each
dataset is the most prominent example of a different requirement
for each dataset. Whereas the main experiments have demonstrated
the results for the feature selection process using the ANOVA’s
F-Score method, the most powerful one, we here complement the
results to demonstrate that other feature selection metrics lead to
the same result. To that, we repeated previous experiments with
the SelectKBest [35] method from scikit-learn, but now using
different feature selection methods. In addition to the F-Score, we
considered the Mutual Information and Chi2 methods, as they
are the most popular feature selectors for classification tasks.

Table 3: Feature Selection Method. Ideal feature set size for
the multiple regional malware datasets.

US BR]JP
F-Score 290 340 800
Chi2 292 342 803

Mutual Info 294 345 812

Table 3 shows the number of features required for the detection
of each dataset to converge to 99% when using different feature se-
lectors. Whereas the F-Score metric, whose results were presented
in the main text, is slightly superior to the other metrics, in the
sense of requiring fewer features, the performance of all feature
selectors (i.e., number of features) is similar. Regardless of the con-
sidered feature selector, the number of required features by each
dataset is different, which shows that this is due to inherent dataset
characteristics rather than due to the feature selection method.

B.2 Varying Classifiers

As for the feature selectors, we also investigated the impact of dif-
ferent classifiers. Whereas we only considered in the main text RF
results, given its prevalence and frequently superior performance
according to previous works, we here extend the experiments to

Cross-Regional Malware Detection via Model Distilling and Federated Learning

other popular classifiers implemented in the scikit-learn frame-
work (RF, SGD, AdaBoost, and SVM). Once again, we hypothesize
that there is an inherent phenomenon originating from dataset
characteristics that is independent of classifier architecture.

Table 4: Classifier Influence on the detection of different
regional malware datasets. Feature set sizes.

95% 997

US BR JP US BR)P
RF 35 40 45 290 340 800
SGD 35 40 45 292 342 805
AdaBoost 35 40 45 292 342 805
SVM 36 41 46 295 345 813

Table 4 shows the number of features required for each dataset
detection converge to 95% and 99% respectively when using differ-
ent classifiers. Whereas the RF classifier’s performance is slightly
superior to its counterparts, as hypothesized, the results for all
classifiers are overall similar, thus reinforcing the hypothesis that
the datasets have unique characteristics that should be handled.
The Pareto characteristic of the classification problem is present in
all classifiers, with much fewer features being required to achieve
95% than the 99% detection rate.

B.3 Varying Distillation Techniques

As for the feature selection and classifiers, we also evaluated the
impact of different distillation strategies on the datasets. We com-
plemented the experiments with the Teacher-Student (TS) strategy
presented in the main text with experiments leveraging the closest

RAID 2024, September 30-October 02, 2024, Padua, Italy

distillation proposal to ours: Federated Model Fusion (FMF) [27].
This approach proposes combining the outputs of multiple models
in a global knowledge database, as we propose to combine region-
specific models into a global one. Whereas originally evaluated
with images, we here extend it to work with malware. To that, we
adapted the proposed algorithm to work in the same conditions as
ours. For instance, instead of operating with N clients, we limited
it to operating with a single one, as each regional model is stored
only in one node (the regional server), not on multiple endpoint
nodes. Similarly, we limited the number of rounds to one, as for
experimental purposes, we can add all the data at once, without
the need of querying individual nodes. With that, the proposed
algorithm is reduced to a version of the TS strategy.

Table 5: Distillation Technique Influence on the detection of
different regional malware datasets. Feature set sizes.

us BR JP

300 (+3%) 400 (+17%) 900 (+12.5%)

299 (+3%) 402 (+18%) 902 (+12.5%)

TS [20, 23]
FMF [27]

Table 5 shows the number of features required for each dataset
detection converge to the 99% detection rate when using differ-
ent distillation techniques and its increase in comparison to the
base models. As hypothesized, the performance of FMF is very
close to the TS, as their operation became very similar under these
conditions. Therefore, we reinforce the claim that the differences

observed in the required number of features are due to the dataset’s
inherent characteristics and that we need to add this work; ’s pre-

sented flexibility to handle it.

	Abstract
	1 Introduction
	2 Challenges & Architectural Design
	3 Methodology
	4 Exploring the Solution Space
	4.1 Is it enough to have global models?
	4.2 Does a global model help?
	4.3 How to best build local-to-global models?
	4.4 Are real models trained from scratch?
	4.5 What is the real impact of ML on AVs?

	5 Case Study: Temporal Evaluation
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Deriving YARA rules from ML models
	B Generalization Evaluation
	B.1 Varying Feature Selectors
	B.2 Varying Classifiers
	B.3 Varying Distillation Techniques

