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ABSTRACT
Memory corruptions are still one of the most prevalent and severe
security vulnerabilities in today’s programs. For this reason, sev-
eral techniques for mitigating software vulnerabilities exist and
are used in production systems. An important mitigation involves
the prevention of invalid control flow transfers. Attackers often
corrupt function pointers to subvert a forward-edge in a program’s
call graph. Forward-edges can be protected using Control-Flow
Integrity (CFI), for which practical implementations already exist.
However, current CFI implementations are often imprecise, allow-
ing more control flow transfers than necessary. This often leaves
sufficient leeway for an attacker to successfully exploit a program.
This paper presents High-Precision CFI (HPCFI), a concept and
implementation for precise forward-edge CFI protection of indirect
calls in C and C++ programs using a combination of type analysis
and static data-flow analysis for determining valid forward-edges.
HPCFI is implemented as LLVM compiler passes that perform a
precise type analysis and utilize the Static Value-Flow (SVF) frame-
work to conduct a static data-flow analysis. The combination of type
analysis and static data-flow analysis offers higher precision than
conventional heuristic-based approaches. Our evaluation, using all
compatible benchmarks from SPEC CPU 2017, demonstrates that
HPCFI can be effectively applied to large projects with an average
performance overhead of only 1.3%, while improving the precision
of established CFI mechanisms, such as Clang CFI, by up to 99%
and 40% on average.
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1 INTRODUCTION
One of the most prevalent security vulnerabilities in today’s sys-
tems are memory corruptions, which has also been recognized in a
2024 report released by the White House [38]. This issue is corrob-
orated by the fact that 70% of all vulnerabilities assigned a CVE by
Microsoft each year, as well as 70% of high-severity security bugs
in the Chromium project, are related to memory safety [12, 24]. In
2023, MITRE identified out-of-bounds writes as the most dangerous
software weakness [25] for the third consecutive year. Memory
corruptions arise from programming errors in unsafe languages
like C and C++, where data on a program’s stack or heap can be
overwritten by illegitimate values. This may enable attackers to
manipulate the intended control flow of a program using tech-
niques such as Return-Oriented Programming (ROP) [35], Jump-
Oriented Programming (JOP) [6], and Call-Oriented Programming
(COP) [10].

The intended control flow of function calls in a program can be
represented by a call graph, where nodes reflect the program’s func-
tions and edges represent function calls (forward-edges) and func-
tion returns (backward-edges) [1]. While safeguarding backward-
edges through the protection of stack-based return addresses is
already widely employed in production programs (e.g., stack ca-
naries [26]), the protection of forward-edges is less common and
more intricate. An attacker may, for instance, subvert a forward-
edge by overwriting a function pointer used in an indirect call.
Control-Flow Integrity (CFI) is a security mechanism designed to
ensure that a program adheres to its intended call graph. Typi-
cal software-based CFI mechanisms operate in two steps: First, an
analysis determines the call graph that should be enforced; sec-
ond, instructions are inserted into the program to enforce that call
graph at runtime [7]. While some CFI mechanisms aim to protect
both forward- and backward-edges [1, 2, 5, 29, 36], more recent
approaches primarily focus on protecting the forward-edges of a
call graph [13, 19, 23, 39]. These CFI mechanisms are meant to be
combined with a suitable backward-edge protection such as shadow
stacks, which protect against stack buffer overflows by maintaining
a secure copy of the call stack’s return addresses [1, 8, 14]. How the
call graph is constructed determines the precision and, thus, the
effectiveness of the CFI mechanism.

A simple approach to building a call graph for forward-edge
CFI is to allow any function to be called from any indirect call
site. For instance, this approach is implemented in Intel Control-
Flow Encorcement Technology (CET), a hardware-based CFI mech-
anism [36]. Compared to an unprotected program, in which an
attacker can manipulate a code pointer to jump to any code loca-
tion, an attacker can now only jump to the beginning of functions
with CET. Microsoft Control Flow Guard (Microsoft CFG) refines
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this approach by only allowing indirect calls to functions whose
addresses have been taken [19]. Both CET and Microsoft CFG are
considered coarse-grained CFI mechanisms and are deemed inef-
fective due to their imprecision. They often provide attackers with
sufficient leeway to successfully exploit a program, even when re-
stricted to jumping only to function beginnings [9, 16]. More precise
and fine-grained CFI solutions, such as Clang CFI [39], construct a
type-based call graph by considering function signatures at indirect
call sites and allowing calls only to functions with matching sig-
natures [39]. Similarly, TypeDive [23] utilizes a Multi-Layer Type
Analysis (MLTA) to construct a call graph which additionally takes
into account the type hierarchy of different compound types (e.g.,
structs) from which a function pointer was loaded.

However, even though type-based CFI mechanisms like Clang
CFI and TypeDive already offer better precision and security guar-
antees than coarse-grained mechanisms, they still permit many
invalid edges in the call graph. For example, in SPEC CPU 2017 [17],
the gcc benchmark contains over 1,000 functions with the signature
(struct rtx_def*, ...) → struct rtx_def*, resulting in sets
of 1,000 possible targets in Clang CFI for all call sites to a function
with this signature.

In this paper, we improve the precision of purely type-based
CFI by combining the call graphs generated through a type-based
analysis and a multi-layer type analysis with a call graph generated
through a whole-program pointer analysis tailored specifically for
CFI. We create a novel and highly precise call graph by intersect-
ing these three call graphs and integrate it into High-Precision
CFI (HPCFI), a forward-edge CFI mechanism implemented as an
LLVM compiler pass. The compiler pass constructs the three call
graphs during Link Time Optimization (LTO), where all source code
modules are available. This allows the pass to construct a pointer
analysis-based call graph of the entire program. The resulting call
graph is then intersected with a type-based call graph similar to
the one used by Clang CFI [13] and a multi-layer type-based call
graph similar to the one used by TypeDive [23].

The intersectionwith themulti-layer type-based call graph yields
an orthogonal improvement to the pointer analysis-based call graph
by addressing a limitation of pointer analyses: the inability to differ-
entiate between different fields of complex structs. Such analyses
often resort to a field-insensitive analysis to ensure soundness,
which results in unanalyzed pointers in these structs. Similarly, the
type-based call graph enhances the precision of the final call graph
in cases where the pointer analysis is imprecise and MLTA cannot
be applied. The final call graph consists of a set of all possible tar-
gets for each indirect call site and always matches or surpasses the
precision of each individual call graph, typically yielding greater
accuracy. The combined call graph is sound if, and only if, all the in-
dividual call graphs are sound, as the intersection will never remove
edges that are present in all the individual call graphs.

Based on our refined call graph, the compiler pass inserts instruc-
tions into the program to enforce the call graph at runtime. We
employ an efficient checking mechanism, similar to Clang CFI [13]
but necessarily adapted for our final call graph, that validates a set
of targets at a call site in constant time using jumptables. Our eval-
uation of the LLVM-based prototype illustrates that our approach
significantly reduces the average number of possible jump targets

Listing 1: Example showing the modification necessary to
remove a function pointer cast from a program.

(a) Function pointer cast from
(short)→short to (int)→int

1 int A(int);

2 short B(short);

3

4

5

6

7 int F(int x) {

8 int(*f)(int)=x>1?A:B;

9 return f(2);

10 }

(b) Clean version of the function
pointer cast.

int A(int);

short B(short);

int B2(int arg) {

return B(arg);

}

int F(int x) {

int(*f)(int)=x>1?A:B2;

return f(2);

}

while incurring a negligible performance overhead. To summarize,
our main contributions are:

• Anovel, highly precise approach for constructing a call graph
at compile-time that combines type analysis, multi-layer type
analysis, and a novel whole-program pointer analysis for
function pointers using the SVF framework [37].

• A forward-edge CFI solution that enforces our combined call
graph using runtime checks with minimal overhead.

• An LLVM-based prototype demonstrating the practicability
of our approach, available as open-source.1

• A thorough evaluation using all compatible SPEC CPU 2017
benchmarks, indicating that our approach incurs only negli-
gible performance overhead while substantially reducing the
number of possible targets compared to previous approaches.

The rest of the paper is structured as follows. First, we cover type-
based call graphs and call graphs based on multi-layer type analysis
in Section 2 and Section 3, respectively. Section 4 provides details on
how the pointer analysis-based call graph is built. The combination
of all three call graphs into the final call graph enforced by HPCFI
is presented in Section 5. Section 6 provides details on how HPCFI
enforces the call graph at runtime. The implementation of HPCFI is
described in Section 7, followed by an evaluation of HPCFI Section 8.
Section 9 covers related work before we conclude in Section 10.

2 TYPE-BASED ANALYSIS
Type-based mechanisms rank among the most precise CFI mech-

anisms, with Clang CFI [13] being the most prominent example.
These mechanisms restrict the set of valid call targets at each call
site to functions that have their address taken and share the same
signature as the call site. Such a set of functions with the same
signature is referred to as an equivalence class. For type-based CFI
mechanisms to function correctly, the dynamic type of a func-
tion at runtime must match the static type expected at the call
site; otherwise, this mismatch causes a false-positive CFI violation.
Consequently, function pointer casts can disrupt this CFI scheme,
requiring developers to avoid incompatible function pointer casts.
Notably, Clang CFI can be enabled for the Chrome browser on
1Source code: https://github.com/Fraunhofer-AISEC/hpcfi



Integrating Static Analyses for High-Precision Control-Flow Integrity RAID 2024, September 30–October 02, 2024, Padua, Italy

Listing 2: Example code illustrating the effectiveness of
MLTA.

1 struct A {

2 int x;

3 struct B {

4 int y;

5 void (*g)();

6 } b;

7 };

8

9 struct A a;

10

11 int main() {

12 a.b.g = funcA;

13 a.b.g(); // MLTA target: funcA

14 return 0;

15 }

Linux x86-64 [11], demonstrating that adhering to such a policy is
feasible even for large projects.

Furthermore, removing function pointer casts from existing code-
bases is a straightforward process, as demonstrated by the example
code in Listing 1. In Sublisting 1a, function B is cast from (short)
→ short to (int) → int in Line 8. Consequently, a type-based
CFI mechanism would not recognize function B as a valid target for
the indirect call f(2) in Line 9, since the dynamic type (int) →
int of f(2) does not match the static type (short) → short of
function B. The removal of a function pointer cast can generally be
achieved by creating a wrapper function with the correct signature
and calling the original function inside the wrapper. In the given
example, the function pointer cast can be eliminated by creating the
wrapper function B2 for function B in Sublisting 1b. Consequently,
only the arguments and the return value need to be cast, rather
than the entire function signature.

3 MULTI-LAYER TYPE ANALYSIS
Type-based CFI mechanisms traditionally focus solely on the type
of function pointers to create equivalence classes. However, this
approach overlooks the fact that function pointers are often stored
within structs in C programs. To address this limitation, Type-
Dive [23], the first CFI mechanism to employ MLTA, leverages this
language characteristic to enhance precision beyond conventional
type-based approaches. MLTA narrows the potential targets for
certain indirect calls by considering the type hierarchy of objects
from which a function pointer is retrieved, namely, a multi-layer
type hierarchy [23].

Take, for example, Listing 2: On Line 5, the function pointer
g is a member of struct B, which is itself a member of struct
A. The multi-layer type for g is determined by the types of all its
containing layers, that is, [struct A, struct B, void (*)()].
MLTA identifies multi-layer types by analyzing program instruc-
tions that index a struct field of function pointer type. The potential
targets of a multi-layer type are then identified by following the
indexed field to the corresponding store instructions. In Listing 2,
funcA is stored to the multi-layer type [struct A, struct B,

Listing 3: Exemplary struct from the perlbench benchmark
in SPEC CPU 2017 [17].

1 struct _PerlIO_funcs {

2 ...

3 SSize_t (*Read) (pTHX_ PerlIO *f, ...

4 SSize_t (*Write) (pTHX_ PerlIO *f, ...

5 ...

6 }

void (*)()] in Line 12. If MLTA determines that finding all stores
is too complex or if the stored value cannot be traced back to a
target function, MLTA cannot be applied to this specific multi-layer
type. For instance, should a reference to a.b.g be stored to other
variables, MLTA would need to identify all related store instruc-
tions, or, as a conservative measure, assume that any function could
be a valid target for the multi-layer type [structA, struct B,
void (*)()]. This conservative approach is necessary to avoid
missing any potential targets, which could cause false positive CFI
violations during runtime. Additionally, MLTA also analyzes type
casts between multi-layer types and falls back to a more permissive
subtype if required. The multi-layer type for an indirect call can
be determined by finding the instruction that indexes the field of
the struct holding the call’s function pointer. A program is then
instrumented to only allow targets with the same multi-layer type
as the call site [23]. In the example in Listing 2, funcA is the sole
valid target in Line 13 for the multi-layer type [struct A, struct
B, void (*)()]. In contrast, type-based CFI mechanisms would
allow all address-taken functions with the signature void → void.

Lu et al. show that in practice each layer beyond the second
provides only a marginal increase in precision [23]. The 2-layer
type in the example corresponds to [struct B, void (*)()]. In
contrast to TypeDive, our MLTA scheme uses 2-layer MLTA (refer
to Section 7).

4 WHOLE-PROGRAM POINTER ANALYSIS
Pointer analysis, or points-to analysis, is a static code analysis tech-
nique used to determine which memory locations a pointer may
point to. The analysis produces a points-to map that correlates
pointers with the memory locations they may reference during pro-
gram execution [3]. In our approach, we employ a whole-program
pointer analysis that considers the entire program rather than ana-
lyzing individual source code modules separately. This allows for an
interprocedural analysis, providing a more precise understanding
of how functions interact with each other and resulting in a more
precise analysis [22]. Given that fully precise pointer analysis is
undecidable [34], the results of a pointer analysis can only yield an
approximation of the true points-to map.

Depending on the goals of the analysis, the calculated results
can either be an over- or underapproximation. A conservative anal-
ysis, or may-analysis, generates an overapproximating result that
includes all possible points-to relationships, potentially introducing
some false relationships. An aggressive analysis, or must-analysis,
produces an underapproximating result that includes only guaran-
teed points-to relationships, potentially omitting some valid rela-
tionships. Therefore, a may-analysis captures all possible targets of
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Table 1: Assessing the effectiveness and analysis times of
field-sensitivity, flow-sensitivity, and context-sensitivity in
SVF [37] through the analysis of average indirect call targets
in SPEC CPU 2017 benchmarks [17].

SVF Field-Sens □ ⊠ ⊠ ⊠
SVF Flow-Sens □ □ ⊠ ⊠
SVF Context-Sens □ □ □ ⊠

perlbench 119.4 119.4 119.4 119.4
953s 1,051s 1,761s 2,695s

mcf 1.8 1.8 1.8 1.8
1s 1s 1s 1s

x264 20.8 18.9 18.9 18.9
33s 41s 869s 1,580s

xz 19.4 14.9 14.9 14.9
1s 1s 17s 21s

imagick 3.8 3.8 3.8 3.8
36s 36s 99s 151s

omnetpp 399.9 397.6 397.6 397.6
1,403s 1,692s 3,371s 7,990s

povray 89.5 89.1 89.1 89.1
111s 145s 207s 305s

parest 211.5 1.5 1.3 1.3
6,008s 983s 1,131s 1,452s

xalancbmk 740.0 699.7 699.7 699.7
2,228s 3,022s 8,725s 32,642s

an indirect call that could occur during program execution, includ-
ing some that may not occur in reality, while a must-analysis only
captures indirect call targets that are certain to occur [3]. For this
work, we employ a may-analysis that overapproximates the possi-
ble targets at indirect calls, as underapproximating could result in
false-positive CFI violations.

Pointer analyses are typically classified in terms of field-sensitivity,
flow-sensitivity, and context-sensitivity. These properties influence
both the precision and the complexity of the analysis. Table 1 as-
sesses the effectiveness of field-sensitivity, flow-sensitivity, and
context-sensitivity in SVF with respect to accurately resolving in-
direct call targets. It presents the average number of indirect call
targets for the SPEC CPU 2017 benchmarks [17], as well as the SVF
analysis times.

Field-Sensitivity. When analyzing pointers in aggregate types
like structs, pointer analyses must decide whether to treat each field
separately (field-sensitive) or equivalently (field-insensitive) [32].
Consider the example in Listing 3, which shows a struct containing
function pointers, a common design pattern in large C programs.
In a field-insensitive analysis, the pointer analysis does not differ-
entiate between assignments to the Read and Write fields. Conse-
quently, the call graph would include all Read functions as potential
targets for the Write function, and vice versa. The pointer analysis
used in our approach is field-sensitive. Table 1 shows that field-
sensitivity can significantly improve the precision of the pointer
analysis. For instance, in the case of parest, field-sensitivity re-
duces the average number of targets from 211.5 to 1.5. Although
field-sensitivity introduces a slight analysis overhead for the SPEC

Listing 4: Example code showing flow-sensitivity.
1 void func(struct _PerlIO_funcs* Funcs) {

2 Func ->read = read1;

3 ...

4 Funcs ->read = read2;

5 Funcs ->read (...); // read2 , (read1)

6 }

CPU 2017 benchmarks, this is not true for parest. Paradoxically,
in the case of parest, the analysis time without field-sensitivity is
substantially higher, despite being significantly less precise. We
hypothesize that the decreased analysis time in the field-sensitive
analysis results from the gain of precision.

Flow-Sensitivity. Flow-sensitive pointer analyses consider the
order of program statements, whereas flow-insensitive analyses do
not. In the example provided in Listing 4, a flow-insensitive analysis
would identify read1 as a valid target for the indirect call in Line 5,
even though Funcs->read is overwritten in Line 4. Although this
example illustrates the potential benefits of flow-sensitivity, a flow-
sensitive analysis also incurs significant compile-time overhead,
especially for large programs [3]. For this reason, we employ a flow-
insensitive pointer analysis in our approach. Moreover, Table 1
shows that incorporating flow-sensitivity into the SVF analysis
results in only a marginal improvement in precision.

Context-Sensitivity. Context-sensitivity refers to the ability of a
pointer analysis to work interprocedurally by analyzing functions
separately for each calling context. A calling context refers to a list
of call sites, including in particular the arguments of each function
call. In contrast, context-insensitive analyses examine a function
for all possible calling contexts simultaneously [3].

Listing 5 provides an example highlighting the differences be-
tween a context-sensitive and a context-insensitive analysis. A
context-insensitive analysis would consider the calling context of
the id function to be the combined context of all id() calls, i.e., the
set {id(funcA), id(funcB)}. Since id simply returns its argument,
the set {funcA, funcB} represents the possible return values for the
id function. Consequently, both funcA and funcB are determined
to be potential targets at the two indirect calls in Line 7 and Line 8.
In contrast, a context-sensitive analysis would analyze the id func-
tion for the arguments funcA and funcB separately, allowing it to
infer that funcA is the only possible target in Line 7 and funcB is
the only possible target in Line 8.

Context-sensitive analyses are particularly useful for dynamic
pointer analyses at runtime, where the context can be part of the
query to the pointer analysis. However, pointer analyses during
compile-time rarely employ context-sensitivity due to limited prac-
tical benefits and poor scalability for large programs [21]. In fact,
Table 1 shows that context-sensitivity did not improve the preci-
sion of our analysis in practice. Therefore, our approach uses a
context-insensitive pointer analysis. Nonetheless, despite its re-
duced precision, the analysis must still be interprocedural in order
to track value flows across function boundaries.
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Figure 1: Combination of Pointer Analysis Call Graph, MLTA Call Graph, and Type Call Graph to the final call graph to enforce
by the example of the code in Listing 6.

Listing 5: Example code showing context-sensitivity.
1 void (*)() id(void (*f)()) {

2 f(); // funcA / funcB

3 return f;

4 }

5

6 void func() {

7 id(funcA)(); // funcA , (funcB)

8 id(funcB)(); // funcB , (funcA)

9 }

5 CALL GRAPH COMBINATION
To generate the most precise call graph possible, we utilize a com-
bination of function signature-based type analysis (refer to Sec-
tion 2), Multi-Layer Type Analysis (MLTA) (refer to Section 3), and
whole-program pointer analysis (refer to Section 4). To ensure the
correctness of a program enforcing the combined call graph, we
guarantee that the static analyses never underapproximate the set
of possible targets at a call site. Underapproximations would re-
sult in enforcing an incomplete call graph, potentially leading to
erroneous CFI violations where a program is aborted even though
no actual CFI violation occurred. Conversely, overapproximating a
set of possible targets would result in enforcing an imprecise call
graph, giving an attacker more leeway than necessary.

The example in Listing 6 demonstrates three indirect calls and
their corresponding targets as determined by the static analyses.
For illustrative purposes, a field-insensitive pointer analysis is used.
Each analysis builds its own call graph, as depicted in Figure 1. In
the call graphs, circles represent functions, and edges represent
possible indirect function calls identified by the analysis of the
same color. In the MLTA call graph, black edges depict indirect
function calls where MLTA could not be applied, for example, when
a function pointer is not loaded from a struct. If MLTA cannot be
applied at an indirect call, all functions are valid targets of this call.
Each individual call graph is an overapproximation of the runtime
call graph, resulting in more edges than necessary. The final call
graph is the intersection of the three separate call graphs created
in the three analyses, containing only the edges present in the
pointer analysis-based call graph, the MLTA-based call graph, and
the type-based call graph.

An essential part of constructing the combined call graph is
the whole-program pointer analysis. Although such an analysis

Listing 6: Example code showing the differences in precision
between a pointer analysis, MLTA, and a type-based analysis.

1 typedef struct S {

2 void (*f)(void (*)());

3 void (*g)();

4 void (*h)(void (*)());

5 } S;

6

7 void A() {

8 void (*f)() = B;

9 f(); // Targets: PA={B}, MLTA=n/a, Type={A,B}

10 }

11

12 void B() {

13 S s = { C, A, D };

14 s.f(s.g); // Targets: PA={A,C,D}, MLTA={C},

15 // Type={C,D}

16 }

17

18 void C(void (*f)()) {

19 f(); // Targets: PA={A,C,D}, MLTA=n/a, Type={A,B}

20 }

21

22 void D(void (*f)()) {

23

24 }

could theoretically construct the most precise call graph possible, in
practice, this is not feasible for large programs due to high runtime
complexity [3]. Consequently, a trade-off between performance
and precision is necessary. For instance, even though we employ a
field-sensitive pointer analysis, its result may not be field-sensitive
in practice. In C programs, object fields can reference each other
in a way that resolving their points-to values introduces infinite
constraints. To handle this, a common approach is tomake the entire
object field-insensitive, ensuring termination and soundness of the
analysis [37]. However, this solution comes at the cost of precision.
In the example provided in Listing 6, the field-insensitivity of struct
S leads to mix-ups between its two fields f and g. Consequently,
the pointer analysis overapproximates the set of possible targets
({A, C, D}) in Line 14 and Line 19.
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Since using structs to store function pointers is a common idiom
in C programs, we employ MLTA to improve the precision of re-
solving indirect calls with function pointers loaded from structs. In
the example provided in Listing 6, MLTA is able to determine that
function C is the only possible target in Line 14. This is because C is
the only function assigned to the field s.f. However, MLTA cannot
be applied to the other two indirect calls in the example since the
corresponding function pointers are not loaded from a struct.

To enhance precision in cases where MLTA cannot be applied, a
standard type-based analysis is employed. Although this approach
may result in underapproximations when dealing with function
pointer casts, removing function pointer casts from existing code is
a straightforward process that we require prior to the analysis (refer
to Section 2). The type-based analysis improves the precision of the
final call graph for the example code in Listing 6 by determining
that function B is not a valid target for the indirect call in Line 19.
This is because the function signature at the call site does not match
the signature of function B.

The final call graph is the intersection of the pointer analysis-
based call graph, the MLTA-based call graph, and the type-based
call graph. Since each call graph determined by the different static
analyses is an overapproximation of the runtime call graph, the
intersection of the three call graphs will also be an overapproxi-
mation of the runtime call graph. Thus, the final call graph will
never miss any actual edges but only remove superfluous ones,
thereby increasing precision. In the case of the example code in
Listing 6, the final call graph depicted in Figure 1 represents the
most precise call graph possible, despite the individual analyses
containing excessive edges. This demonstrates that the analyses
complement each other effectively.

6 CALL GRAPH ENFORCEMENT
To enforce the combined call graph at runtime, we insert instruc-
tions before each indirect call during compilation, similar to Clang
CFI [13]. These instructions, called CFI checks, terminate a program
immediately if an indirect call that does not adhere to the combined
call graph is about to be executed. Since CFI checks add runtime
overhead and increase the size of the instrumented program, it is
crucial to implement these checks efficiently. Section 6.1 discusses a
straightforward yet inefficient method for implementing CFI checks.
This method is applied at indirect call sites with only a small num-
ber of potential targets. For indirect call sites with larger target sets,
we use a more sophisticated and efficient technique based on the
CFI checking mechanism in Clang CFI. We describe this technique
in Section 6.2. The two different types of CFI checks are explained
using the example code provided in Listing 7. In the example, three
indirect calls occur via the function pointers f, g, and h in Lines
12-14. A fully precise static analysis of function M in isolation would
identify the potential targets {A, B} for f(), {B, C} for g(), and {D,
E} for h().

6.1 Simple Check
A straightforward method to implement CFI checks using the com-
bined call graph from the three static analyses is to compare the
function pointer of an indirect call against each authorized target
before making the call. If the pointer matches one of the targets,

Listing 7: Example function with annotations for valid indi-
rect call targets by examplary static analysis.

1 void M(int a)

2 {

3 f = A;

4 if (a > 1)

5 f = B;

6 g = B;

7 if (a > 2)

8 g = C;

9 h = D;

10 if (a > 3)

11 h = E;

12 f(); // targets: A or B

13 g(); // targets: B or C

14 h(); // targets: D or E

15 }

  

void M(int a)
{
  f = A;
  if (a > 1)
    f = B;
  g = B;
  if (a > 2)
    g = C;
  h = D;
  if (a > 3)

 h = E;
  f();
  g();
  h();
}

void A()
{
  // ...
}

void B()
{
  // ...
}

void C()
{
  // ...
}

abort

abort

f == A  f == B ?∨

g == B  g == C ?∨
void D()
{
  // ...
}

void E()
{
  // ...
}

h == D  g == E ?∨

abort

Figure 2: Simple CFI checks: Each indirect call is protected
by a separate CFI check.

the indirect call is allowed. Otherwise, the program is terminated
with a CFI violation. Figure 2 illustrates the insertion of such CFI
checks using the sample code provided in Listing 7. In this example,
in order to perform the indirect call f(), it must hold that f is either
equal to A or B. These two targets have been determined by the
static analyses. If f does not match A or B, a CFI violation occurs,
and the program is aborted.

These simple CFI checks provide optimal precision: every target
in the combined call graph is permitted, while all other targets are
not. However, this type of CFI check may impose significant per-
formance overhead. At each indirect call site, up to n comparisons
may be required at runtime for n potential targets. Consequently,
we propose a more refined CFI checking mechanism suitable for
indirect call sites with a large number of targets next.
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void M(int a)
{
  f = x;
  if (a > 1)
    f = x+8;
  g = x+8;
  if (a > 2)
    g = x+16;
  h = y;
  if (a > 3)
    h = y+8;
  f();
  g();
  h();
}

void A()
{
  // ...
}

void B() 
{
  // ...
}

void C() 
{
  // ...
}

x     : jmp A

x + 8 : jmp B

x + 16: jmp C

f ≥ x  f ≤ x+16 ?

∧

g ≥ x g ≤ x+16 ?
∧

abort

void D() 
{
  // ...
}

void E() 
{
  // ...
}

y     : jmp D

y + 8 : jmp E

abort

h ≥ y h ≤ y+8 ?
∧

Figure 3: Fast CFI check: Two jumptables are created for
our example. The first jumptable is used for the CFI checks
protecting the indirect calls f() and g() and the second jump-
table for h().

6.2 Fast Check
We now present a refined CFI checking mechanism specifically
designed for handling indirect call sites with a large number of po-
tential targets. This mechanism significantly accelerates CFI checks
by employing jump tables, which facilitate the execution of CFI
checks for any number of targets in constant time. The concept
of using jump tables is inspired by Tice et al. [39] and has been
implemented in a similar form in Clang CFI [13]. Our empirical
experiments indicate that simple comparison-based checks outper-
form jump table-based checks for indirect call sites with up to three
targets. Notably, Clang CFI employs comparison-based checks only
for indirect call sites with a single target.

To utilize jump tables, the CFI instrumentation requires the use
of equivalence classes. At each call site, the instrumentation only
permits targets from the same equivalence class, with each class cor-
responding to a specific jump table. An equivalence class represents
a set of functions that are equivalent according to the CFI approach.
In Clang CFI, equivalence classes are constructed based on func-
tions sharing the same signatures, thus allowing a unique mapping
of disjoint sets of call sites to disjoint sets of functions. Each dis-
joint set of functions constitutes an equivalence class. However,
our threefold static analysis does not allow for such a mapping, as
we identify potential targets for each indirect call site individually,
rather than for a set of indirect call sites. For example, in Listing 7,
function B is a valid target for the indirect calls f() and g(). How-
ever, function A is only a valid target for the indirect call f(), but
not for g(). Consequently, function B is included in two equiva-
lence classes: one for f() and another for g(). However, to replace
function pointers with jump table entries, targets must be exclusive
to a single equivalence class. Otherwise, using the same function
pointer in multiple jump tables could lead to ambiguous function
pointer comparisons, resulting in different program semantics.

In order to use equivalence classes with our three static analy-
ses, we modify the combined call graph to ensure that each target
belongs only to a single equivalence class. It is important to note
that this modification may introduce imprecisions in enforcing the
combined call graph. However, we show that these imprecisions
are minimal in Section 8. Figure 3 illustrates an optimized CFI check
for the example shown in Listing 7. Since the static analyses deter-
mined that function B is a valid target for both indirect calls f() and
g(), the first jump table consists of A, B, and C—representing the
combined targets for both call sites. Merging targets is necessary
to form an equivalence class, but it also leads to less precise CFI
checks. The check for f() now additionally allows function C and
the check for g() allows function A. Next, all function pointers are
substituted with their respective jump table entries, as depicted in
the modified source code in Figure 3. For instance, A is replaced by
x, and B is replaced by x+8. The use of equivalence classes enables
a straightforward replacement of function pointers with jump ta-
ble indices. Note that these jump table entries can be utilized in
the same way as the original function pointers for both function
calls and function pointer comparisons. Performing CFI checks
now simply involves a range check to verify whether a function
pointer falls within the designated jump table bounds. The target
pointer must neither be less than the jump table’s start address nor
greater than the address of its last entry. Additionally, an alignment
check is necessary to prevent any attempts by an attacker to hijack
control by using the middle of jump table entries as jump targets.
Otherwise, a CFI violation occurs and the program is aborted. It is
important to note that the example was deliberately chosen such
that the equivalence class {A, B, C} is an overapproximation of
the targets from the static analyses. In Section 8, we demonstrate
that the loss of precision is minimal in most cases.

7 IMPLEMENTATION
Wehave implemented an LLVM-based CFImechanism calledHPCFI,
which enforces the combined call graph as presented in 5. Figure 4
illustrates the compilation process when using HPCFI. First, HPCFI
analyzes each source file to identify indirect calls, distinguishing
them from virtual calls. To reliably differentiate between these two
call types, the analysis must run at compile time, prior to any op-
timizations. This closely resembles the virtual call identification
implementation in Clang CFI [13].

HPCFI employs a Multi-Layer Type Analysis (MLTA) implemen-
tation similar to, but independent of, TypeDive [23]. Our MLTA
consists of two stages: the first stage operates before any LLVM
optimizations, while the second stage runs during LTO. In contrast,
TypeDive runs exclusively during LTO. This is unproblematic if
a target is compiled without any optimizations (the method used
by the authors to evaluate TypeDive [23]), but may result in an
incomplete call graph when compiled with optimizations enabled.
Optimizations can obscure instructions that index struct fields, pre-
venting MLTA from reliably identifying stores of function pointers
to struct fields. To address this issue and ensure the practical us-
ability of HPCFI in realistic compilation scenarios with enabled
optimizations, we analyze function pointer stores to struct fields
and call sites of such function pointers before any optimizations.
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Figure 4: HPCFI Compilation Process.

Our first stage, in further contrast to TypeDive, only considers
the types in the first two layers when collecting function pointers.
Additional layers have been shown to only marginally improve
precision [23] while significantly increasing the complexity of the
analysis and the risk of omitting edges in the MLTA call graph.
The results of the first stage are attached as LLVM metadata to
each analyzed IR file and carried to the second stage. This metadata
associates struct fields with potential function pointers and contains
information about which struct fields are used as indirect call targets
at specific call sites. After the compile and link time optimizations,
the second MLTA stage uses the metadata from the first stage to
construct the MLTA-based call graph for the whole program.

Following that, HPCFI constructs the type-based call graph. Even
though the construction of the type-based call graph is very similar
to Clang CFI, there are some small but crucial differences. Clang CFI
is not implemented purely in the LTO phase but instead consists of
an analysis pass running at compile time and an instrumentation
pass running during link time. During compile time, Clang CFI
inserts an llvm.type.test intrinsic function before each indirect
call, which holds information about the expected type of the target
pointer. Additionally, Clang CFI embeds metadata within functions
that specify their respective signatures [13]. This is done at compile
time to accommodate potential alterations to function signatures
by the linker. For instance, the linker merges isomorphic structs,
i.e., structurally identical structs but with different names, resulting
in a change to a function’s signature if such a struct is included in
it. In contrast, HPCFI disables the merging of isomorphic structs,
which enables HPCFI’s type pass to run at link time while avoiding
false-positive function signature mismatches.

Next, the pointer analysis call graph is built. The pointer analy-
sis of HPCFI is designed to operate on the entire program and is
therefore executed during LTO, where inter-modular analysis is
possible. We utilize the whole-program pointer analysis from the
SVF framework [37] to construct the pointer analysis-based call
graph. Static Value-Flow (SVF) is a program analysis framework
specifically designed for analyzing LLVM IR using interprocedural
static value-flow analysis and pointer analysis [37]. In HPCFI, we
employ SVF to perform a field-sensitive, context-insensitive, and
flow-insensitive variant of Andersen’s pointer analysis. For cases
where SVF does not fully cover all aspects required for sound static
analysis, such as interactions with unmodeled libraries, a fallback
mechanism that allows all address-taken functions at the affected
call site is necessary to ensure soundness.

Once all three call graphs have been built, they are combined
into the final call graph as described in Section 5. Finally, the HPCFI
pass inserts the CFI checks presented in Section 6 into the program
to enforce the combined call graph.

The various compiler passes of HPCFI are implemented in C++
for LLVM 13 and can be used from within the LLVM compiler
pipeline. Since HPCFI operates on LLVM IR, the compiler pass
is technically independent of the source language. However, SVF
currently only supports C and C++.

8 EVALUATION
In this section, we evaluate the precision, performance, and com-
pile time of HPCFI using the SPEC CPU 2017 benchmark suite [17].
The evaluated benchmarks include all C and C++ benchmarks in
SPEC CPU 2017 that contain at least one indirect call, with the
exception of blender, which did not successfully compile with our
version of the LLVM compiler. All benchmarks were compiled
using optimization level O2. As discussed in Section 2, HPCFI’s
type-based call graph requires programs to be free from ambigu-
ous function pointer casts. To ensure all benchmarks run without
any false-positive CFI violations due to function type mismatches,
we modified the source code of the perlbench, gcc, mcf, imagick,
povray, parest, and xz benchmarks to eliminate function pointer
casts. These modifications involved changing fewer than 100 lines
of code. We note that the same modifications were also necessary to
run the benchmarks with standard Clang CFI. Section 2 provides a
detailed description of how these modifications must be performed.
Moreover, due to a bug in SVF that leads to an underapproximation
in the indirect call target resolution, we excluded two indirect calls
in parest from the CFI instrumentation. In addition to the SPEC
CPU 2017 benchmarks, we also evaluate the precision and compile
time of two real-world applications: Nginx, a webserver [28], and
Redis, a database [33].

The remainder of this section is organized as follows. In Sec-
tion 8.1, we evaluate whether HPCFI’s final call graph, as a com-
bination of a type-based call graph, MLTA call graph, and pointer
analysis call graph, can enhance precision over each individual call
graph and existing CFI mechanisms. In Section 8.2, we compare the
performance of HPCFI to Clang CFI. Finally, Section 8.3 examines
the compilation time required by HPCFI.
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Table 2: Average indirect call targets per call site of type-based CFI (similar to Clang CFI [13]), MLTA CFI (similar to Type-
Dive [23]), pointer analysis CFI, and HPCFI for SPEC CPU 2017 benchmarks [17], Nginx [28], and Redis [33].

Program Metrics Arithmetic and Geometric Mean of Indirect Call Targets Improv. over Type CFI
Addr.-Taken MLTA ∩ HPCFI HPCFI MLTA ∩ HPCFI

Benchmark Code Size Functions Functions Type CFI Type CFI PA CFI Simple Fast Type CFI Fast

perlbench 1.9 MB 1,755 866 30.2 17.3 15.9 6.8 119.4 57.1 15.8 6.7 16.2 6.8 47% 61% 46% 61%
gcc 8.0 MB 8,958 3,829 75.0 16.1 71.0 10.6 105.4 14.4 45.3 6.2 45.4 6.3 5% 34% 39% 61%
mcf 16.5 KB 51 3 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 0% 0% 0% 0%
x264 878.8 KB 948 339 6.8 3.7 3.7 2.3 18.9 13.8 3.7 2.3 4.5 2.5 46% 38% 34% 32%
xz 93.3 KB 168 95 6.6 4.2 5.8 3.8 14.9 10.2 4.6 3.0 4.9 3.1 12% 10% 26% 26%
imagick 1.2 MB 789 60 7.5 3.5 7.5 3.5 3.8 2.5 1.6 1.2 1.6 1.2 0% 0% 79% 66%
omnetpp 1.1 MB 5,004 4,073 15.8 4.8 15.8 4.8 397.6 136.3 15.5 4.6 15.5 4.6 0% 0% 2% 4%
povray 1.0 MB 1,223 535 23.1 14.5 15.8 11.4 89.1 43.3 15.8 11.4 15.8 11.4 32% 21% 32% 21%
parest 1.7 MB 2,878 1,910 105.5 95.8 105.5 95.8 1.5 1.4 1.5 1.4 1.5 1.4 0% 0% 99% 99%
xalancbmk 2.7 MB 8,711 6,424 57.0 24.2 57.0 24.2 699.7 48.8 31.7 15.4 31.7 15.4 0% 0% 44% 36%
nginx 648 KB 3,966 2,023 16.4 10.0 14.8 8.2 189.1 111.5 11.2 6.8 11.2 6.8 10% 18% 32% 32%
redis 2.1MB 4,891 1,098 4.0 2.3 3.3 2.0 167.2 60.4 2.3 1.6 2.3 1.6 18% 13% 43% 30%
Arithm. Mean 14% 16% 40% 39%

Table 3: Comparison of average (arithmetic and geometric
mean) indirect call targets of type-based CFI, MLTA CFI, and
pointer analysis CFI exclusively for MLTA-applicable call
sites for SPEC CPU 2017 benchmarks [17], Nginx [28], and
Redis [33].

MLTA ∩ MLTA
Benchmark Type CFI Type CFI PA CFI Appl.
perlbench 24.2 17.6 5.5 5.2 136.9 77.9 77%
gcc 63.2 7.6 53.6 2.8 55.9 2.9 41%
mcf - - - - - - 0%
x264 7.7 3.9 3.5 2.1 20.7 14.5 73%
xz 7.8 6.1 6.6 5.3 13.9 9.1 63%
imagick - - - - - - 0%
omnetpp - - - - - - 0%
povray 41.8 35.6 23.11 19.5 121.4 98.2 39%
parest 109.0 109.0 109.0 109.0 1.5 1.4 97%
xalancbmk 76.0 76.0 76.0 76.0 2069.0 2069.0 33%
nginx 11.1 4.8 5.0 2.3 233.7 177.9 26%
redis 3.2 2.1 1.9 1.6 153.4 80.1 48%
Arithm. Mean 41%

8.1 Precision
To evaluate the precision of HPCFI, we compare the average num-
ber of allowed targets at indirect call sites for purely type-based CFI,
MLTACFI, pointer analysis CFI, and HPCFI in Section 8.1.1. The pre-
cision of our type-based CFI mechanism aligns closely with Clang
CFI, with minor differences due to Clang CFI’s insertion of instruc-
tions at compile time, which slightly alters input for subsequent
compiler passes (refer to Section 7) [13]. Since TypeDive [23] has
some limitations in combination with compiler optimizations (refer
to Section 7), we use our own MLTA implementation. Nonetheless,

we expect the precision of our MLTA CFI in combination with type-
based CFI to be similar to TypeDive, as both function similarly. As
an additional metric to the average number of indirect call targets,
we evaluate the distribution of the target set sizes in Section 8.1.2.

8.1.1 Average Indirect Call Targets. Table 2 presents the arithmetic
mean and geometric mean of call targets per indirect call site for
type-based CFI (Type CFI), MLTA CFI combined with type-based
CFI (MLTA ∩ Type CFI), pointer analysis CFI (PA CFI), and HPCFI.
For a full pairwise comparison of Type CFI, MLTA CFI, and PA CFI,
refer to Table 6 in the Appendix. The first column shows the code
size of the unprotected binaries, which provides an indication of the
number of potential targets, as any instruction in uninstrumented
binaries could be a target for an indirect call. The second column
displays the number of functions within the binary, reflecting the
precision of Intel CET, which enforces that indirect calls must target
only the start of a function [31]. Similarly, the third column shows
the average number of functions from which an address was taken,
which corresponds to the precision of Microsoft CFG [19]. Type-
based CFI enhances the precision of coarse-grained CFI mechanisms
like Intel CET [31] and Microsoft CFG [19] by taking the types of
function pointers into account. The average number of targets for
type-based CFI generally increases as the code size of the binary
grows, suggesting that, like Intel CET and Microsoft CFG, type-
based CFI becomes less effective as the code size increases.

The combination with MLTA CFI further enhances precision by
considering the object type hierarchy from which function pointers
are loaded. SinceMLTA∩ Type CFI uses a type-based call graph as a
fallback for indirect calls where MLTA is not applicable, it is always
at least as precise as type-based CFI. Table 3 shows the number of
indirect calls to which MLTA can be applied in each benchmark.
In certain benchmarks, only a small number of function pointers
are loaded from structs, limiting the applicability of MLTA and
resulting in only marginal improvements to the precision of type-
based CFI. For instance, none of the 397 indirect calls in the imagick
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Figure 5: Cumulative target set sizes for type-based CFI (Type CFI), pointer analysis CFI (PA CFI), the combination of type-based
CFI and multi-layer type CFI (Type ∩ MLTA CFI), and HPCFI for SPEC CPU 2017 benchmarks [17], Nginx [28], and Redis [33].

benchmark utilize MLTA. In contrast, MLTA can be applied to 73%
of indirect calls in the x264 benchmark, where struct x264_t
contains 368 function pointers. In this instance, MLTA is highly
effective and reduces the average number of targets for MLTA-
applicable indirect calls from 7.7 (type-based CFI) to 3.5.

The pure pointer analysis CFI mechanism, which utilizes SVF to
determine targets for indirect calls, shows a precision improvement
of approximately 99% for the parest benchmark and 50% for the
imagick benchmark, but on average, is less precise than type-based
CFI for all other benchmarks.
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Even though pointer analysis CFI does not perform well on its
own, the combination with type-based CFI and MLTA CFI in HPCFI
significantly improves precision. For example, HPCFI improves the
precision for gcc from 71.0 (MLTA∩ Type CFI) and 105.4 (PA CFI) to
45.3, and for imagick from 7.5 (MLTA ∩ Type CFI) and 3.8 (PA CFI)
to 1.6. HPCFI with fast checks is only slightly less precise compared
to HPCFI with simple checks for perlbench, gcc, x264, and xz. On
average, HPCFI improves the precision of type-based CFI by 40%,
whereas MLTA ∩ Type CFI alone achieves an improvement of only
14%. It is worth noting that precision improvements are not always
possible. For the mcf benchmark, a manual analysis revealed that
type-based CFI is already 100% accurate, making further precision
improvements impossible. In conclusion, HPCFI significantly im-
proves the average indirect call targets of fine-grained type-based
CFI mechanisms such as Clang CFI and MLTA CFI.

8.1.2 Target Set Size Distribution. While the average number of
indirect call targets provides a good indication of the security of a
CFI scheme, the distribution of target set sizes is also important. For
instance, reducing the target set sizes of 10 call sites from 1,000 to
100 may not be as beneficial as reducing the target set sizes of 1,000
call sites from 10 to 1. Although both scenarios eliminate 9,000 of
10,000 possible targets, the latter results in a more significant tight-
ening of control flow. In contrast, the former scenario still permits
100 targets per call site, which may still be vulnerable to control-
flow bending attacks [9]. Figure 5 shows the cumulative target set
sizes for type-based CFI (Type CFI), pointer analysis CFI (PA CFI),
the combination of type-based CFI and multi-layer type CFI (Type
∩ MLTA CFI), and HPCFI for SPEC CPU 2017 benchmarks [17],
Nginx [28], and Redis [33]. For a full pairwise comparison of Type
CFI, MLTA CFI, and PA CFI, refer to Figure 7 in the Appendix. The
area under a line represents the total number of allowed targets at
all call sites, which corresponds to the average number of indirect
call targets shown in Table 2. Generally, target sizes are not evenly
distributed. Instead, many target sets are either very small (0-3
targets) or very large (up to 6,424 for xalancbmk), which is evident
in Figure 5 by the convexity of the lines. The convexity is even
more pronounced when analyzing the combination of pointer anal-
ysis CFI, MLTA CFI, and Type CFI, indicating that HPCFI tends to
further reduce already small target set sizes rather than improving
large target sets.

8.2 Performance
For a CFI mechanism to be applicable in real-world programs, it
must incur minimal performance overhead. We conducted a per-
formance evaluation of HPCFI on a 64-bit x86 AMD Ryzen 7 PRO
4750U CPU with 32GB RAM running Ubuntu 20.04. To minimize
variations in performance results, we disabled frequency scaling,
isolated the CPU running the benchmarks through CPU shielding,
and turned off ASLR. We averaged the performance results over six
runs, with a relative standard deviation of less than one percent for
all benchmarks.

To evaluate the performance of HPCFI, we selected ClangCFI [13]
(using the -fsanitize=cfi-icall flag for Clang) as the primary
reference mechanism for two reasons. Firstly, Clang CFI is widely
used in large real-world projects like Chrome on Linux [11] and
Android. On Android, it is used in various system components and

can even be enabled for the kernel [4]. Secondly, like HPCFI, Clang
CFI is implemented in LLVM [13], allowing for a meaningful com-
parison between both mechanisms. However, it is important to note
that Clang CFI already inserts instructions during compile time
(refer to Section 7), which means that subsequent compiler passes
will run on different input compared to HPCFI. This can result in
different behavior of the subsequent compiler passes. For example,
the inliner pass may choose to inline a function in HPCFI but not
in Clang CFI due to variations in the number of instructions within
the function. As a result, small differences in performance may arise
that are not directly related to the CFI mechanisms themselves.

Table 4 shows the number of static and dynamic indirect calls
for the SPEC CPU 2017 benchmarks [17]. Static indirect calls are
categorized into two groups: all indirect call sites found in the pro-
gram and those indirect calls with at least one possible target in
the HPCFI call graph. Call sites with no valid targets are identified
exclusively by the pointer analysis and may, for example, occur due
to inlining. The number of dynamic indirect calls is expected to
correlate with the performance overheads, which are shown in Fig-
ure 6. HPCFI-Fast demonstrates low performance overheads across
all benchmarks, with an average overhead of 1.3% compared to the
average overhead of 2.6% for Clang CFI. HPCFI-Simple, employing
simple compare checks (refer to Section 6.1), exhibits more pro-
nounced overheads, reaching 57.1% for the perlbench benchmark.
This is mainly due to perlbench having an indirect call with a large
number of potential targets on its frequently executed path. For
both HPCFI-Fast and Clang CFI, the maximum overhead occurs
with the mcf benchmark at 4.1% and 8.6%, respectively. Interest-
ingly, some benchmarks show a negative performance overhead,
likely resulting from measurement noise as discussed by Mytkow-
icz et al. [27]. Such measurement noise can arise from different
UNIX environment sizes, which can affect stack alignment, among
other factors. As expected, the performance overheads of Clang
CFI and HPCFI-Fast are similar since they both use the same CFI
checking mechanism. However, slight differences can occur for sev-
eral reasons. Firstly, the compilation process slightly differs, which
can result in different optimizations being performed by LLVM.
Secondly, HPCFI-Fast uses compare checks for indirect calls with
three or fewer targets instead of a jumptable check (refer to Sec-
tion 6.2), while Clang CFI only uses a compare check when there is
only a single target [13]. Additionally, HPCFI-Fast achieves higher
precision than Clang CFI, potentially enabling it to replace more
jumptable checks with compare checks. In summary, HPCFI-Fast
exhibits negligible performance overhead.

8.3 Compile Time
Given that HPCFI requires a computationally expensive pointer
analysis, it is expected to impose a significant compile time over-
head. However, our results indicate that the analysis completes
within an acceptable time frame, even for large programs. Table 5
presents the compile times for the SPEC CPU 2017 benchmarks [17],
Nginx [28], and Redis [33]. For smaller programs like mcf and xz,
the overhead from the static analysis is negligible. Even for medium-
sized programs such as imagick and povray, the increase in compile
time remains moderate. However, very large programs like gcc,
which consist of millions of lines of code and are highly complex,
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Figure 6: Performance overhead of HPCFI and Clang CFI (baseline LLVM LTO) for SPEC CPU 2017 benchmarks [17].

Table 4: Number of static and dynamic indirect calls for SPEC
CPU 2017 benchmarks [17].

#static call sites #dynamic
Benchmark > 0 targets total call sites
perlbench 572 579 13,275,847,191
gcc 5,162 5,407 1,733,358,573
mcf 20 20 20,013,516,767
x264 901 910 3,794,109,331
xz 111 184 502,633,284
imagick 397 403 37,374,914
omnetpp 8 20 109,806
povray 69 69 28,258,780,723
parest 31 86 43,972
xalancbmk 3 3 10

time remains moderate. However, very large programs like gcc,
which consist of millions of lines of code and are highly complex,
can experience a considerable compile time overhead. It is impor-
tant to recognize that enabling CFI instrumentation exclusively for
production builds is sufficient, allowing the static analysis over-
head to be incurred only when necessary, minimizing its impact on
development and testing processes.

9 Related Work
Since the original work on CFI by Abadi et al. [1], there have been
numerous advancements in CFI policies and designs [15, 18, 20,
23, 29, 30, 39–41]. In this section, we compare HPCFI to other re-
cent forward-edge CFI mechanisms that leverage static analyses to
achieve precise results.

A popular class of CFI mechanisms employs a simple static anal-
ysis to construct a type-based call graph and then instruments
programs to enforce this call graph at runtime. This includes call
graphs based on function signatures [29, 30, 39, 41] and call graphs

Table 5: Compile time overhead of HPCFI for SPEC CPU
2017 benchmarks [17], Nginx [28], and Redis [33].

Benchmark KLOC Baseline HPCFI Overhead
perlbench 362 1,899 2,950s 55%
gcc 1,304 4,395s 65,749s 1,396%
mcf 3 19s 20s 5%
x264 96 963s 1,004s 4%
xz 33 66s 67s 2%
imagick 259 1,353s 1,389s 3%
omnetpp 134 1,302s 2,994s 126%
povray 170 1189s 1,334s 12%
parest 427 4,798s 5,781s 20%
xalancbmk 520 5,873s 8,895s 51%
nginx 147 232s 765s 230%
redis 109 503s 3,478s 591%
Arithm. Mean 208 %

based on the type hierarchy of structs [23], as described in Sections 2
and 3. Compared to the type-based and multi-layer type-based call
graph generation, HPCFI employs a threefold generation where
a type-based call graph, multi-layer type-based call graph, and
pointer analysis-based call graph are computed and intersected
into a single call graph. This resulting call graph benefits from the
complementary nature of the individual graphs.

Another class of CFI mechanisms relies on contextual informa-
tion only available at runtime. For example, this context can be the
recent execution history recorded by the CPU, as implemented in
PathArmor [40] and 𝜇CFI [18]. PathArmor utilizes the Last Branch
Record (LBR), while 𝜇CFI uses Processor Traces (PTs). Both LBR and
PT can only be accessed by the kernel. However, since transition-
ing into kernel space is expensive, both PathArmor and 𝜇CFI only
enforce their CFI policy at select system calls, resulting in partial
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cent forward-edge CFI mechanisms that leverage static analyses to
achieve precise results.

A popular class of CFI mechanisms employs a simple static anal-
ysis to construct a type-based call graph and then instruments
programs to enforce this call graph at runtime. This includes call
graphs based on function signatures [29, 30, 39, 41] and call graphs
based on the type hierarchy of structs [23], as described in Sections 2
and 3. Compared to the type-based and multi-layer type-based call

Table 5: Compile time overhead of HPCFI for SPEC CPU
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Benchmark KLOC Baseline HPCFI Overhead
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graph generation, HPCFI employs a threefold generation where
a type-based call graph, multi-layer type-based call graph, and
pointer analysis-based call graph are computed and intersected
into a single call graph. This resulting call graph benefits from the
complementary nature of the individual graphs.

Another class of CFI mechanisms relies on contextual informa-
tion only available at runtime. For example, this context can be the
recent execution history recorded by the CPU, as implemented in
PathArmor [40] and 𝜇CFI [18]. PathArmor utilizes the Last Branch
Record (LBR), while 𝜇CFI uses Processor Traces (PTs). Both LBR and
PT can only be accessed by the kernel. However, since transition-
ing into kernel space is expensive, both PathArmor and 𝜇CFI only
enforce their CFI policy at select system calls, resulting in partial
protection. These mechanisms check adherence to the call graph
within an additional thread, where they perform a live pointer anal-
ysis to create a context-sensitive call graph. In contrast, HPCFI
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does not consider any runtime context when creating its call graph.
Instead, the call graph is created during compile time, which helps
save performance at runtime.

Another context-sensitive CFI mechanism is Origin-sensitive
Control Flow Integrity (OS-CFI) [20], which takes the origin of a
function pointer as context. The origin is defined by Khandaker et
al. as the instruction that most recently wrote to a function pointer.
OS-CFI operates by conducting a pointer analysis during compile
time using SVF to identify all possible origins of indirect calls. Then,
a program is instrumented at these origins by mapping the code
address of the origin to a function pointer in a metadata storage.
At indirect call sites, the function is used to look up the origin,
which must be a valid origin for that call site as determined by
the pointer analysis. Additionally, the most recent return address
can be utilized to better differentiate between same origins but
different execution paths. Although bothHPCFI andOS-CFI use SVF
for a pointer analysis during compile time, their instrumentation
methods differ significantly. As a result, HPCFI demonstrates better
performance, while OS-CFI can achieve higher precision. OS-CFI
exhibits a performance overhead of 8.2% on the SPEC CPU 2006
benchmarks [20], while Clang CFI shows a 1% overhead on the
same benchmarks [39].

Ge et al. implement a fine-grained CFI mechanism specifically
for kernel software [15]. For forward-edge call graph construction,
they utilize a static taint analysis to precisely identify indirect call
targets. This analysis achieves high precision by operating under
certain assumptions, which are typically valid in kernel code. For
example, theremust not exist any data pointers to a function pointer.
To maintain soundness, any violations of these assumptions are
reported to the user. In contrast, HPCFI does not rely on any special
assumptions, which may lead to less precise call graphs in some
instances.

10 CONCLUSION
In this paper, we presented HPCFI, a mechanism that combines type-
based analysis, multi-layer type analysis, and pointer analysis to
construct a precise call graph for CFI enforcement. We implemented
a functional prototype of HPCFI using LLVM and evaluated it using
the SPEC CPU 2017 benchmark suite. The evaluation demonstrated
that HPCFI can be successfully applied to large programs. Our
results showed that HPCFI improves the precision of established
CFI mechanisms, such as like Clang CFI, by an average of 40%,
while maintaining negligible performance overheads.
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A PAIRWISE PRECISION EVALUATION
The following complements the precision evaluation in Section 8
by presenting a pairwise comparison of type-based CFI, MLTA CFI,
and pointer analysis CFI for the SPEC CPU 2017 benchmarks [17],
Nginx [28], and Redis [33]. Table 6 presents the average number of
indirect call targets per call site and Figure 7 shows the cumulative
target set sizes. The pure MLTA results use all address-taken func-
tions as fallback for inapplicable call sites, resulting in a significant
lack of precision for some indirect calls. However, the combination
of Type CFI and MLTA CFI enhances the precision of both meth-
ods. For instance, in perlbench, the number of indirect call targets
decreases from 30.2 (Type CFI) and 205.5 (MLTA CFI) to 14.9 when
combined. Similarly, PA CFI substantially overapproximates the tar-
gets of some indirect calls. But the combination of PA CFI and Type
CFI, for instance, improves the precision for imagick from 3.8 (PA
CFI) and 7.5 (Type CFI) to 1.6. Additionally, the combination of PA
CFI and MLTA CFI increases the precision for perlbench from 119.4
(PA CFI) and 205.5 (MLTA CFI) to 18.5. Notably, the combination of
all three techniques yields the most precise results, demonstrating
that each analysis contributes to the overall precision gains.
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Table 6: Average (arithmetic and geometric) number of indirect call targets per call site of type-based CFI, MLTA CFI, pointer
analysis CFI, as well as all combinations for SPEC CPU 2017 benchmarks [17].

Addr.-Taken Type ∩ Type ∩
Benchmark Functions Functions Type MLTA PA MLTA Type ∩ PA MLTA ∩ PA MLTA ∩ PA
perlbench 1,755 866 30.2 17.3 205.5 17.0 119.4 57.1 15.9 6.8 30.1 17.1 18.5 7.1 15.8 6.7
gcc 8,958 3,829 75.0 16.1 2,271.9 193.7 105.4 14.4 71.0 10.6 45.4 6.2 104.4 14.1 45.3 6.2
mcf 51 3 1.8 1.7 3.0 3.0 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7
x264 948 339 6.8 3.7 94.7 8.3 18.9 13.8 3.7 2.3 6.8 3.7 6.4 3.3 3.7 2.3
xz 168 95 6.6 4.2 39.2 15.3 14.9 10.2 5.8 3.8 5.0 3.2 9.2 5.9 4.6 3.0
imagick 789 60 7.5 3.5 60.0 60.0 3.8 2.5 7.5 3.5 1.6 1.2 3.8 2.5 1.6 1.2
omnetpp 5,004 4,073 15.8 4.8 4,073.0 4,073.0 397.6 136.3 15.8 4.8 15.5 4.6 397.6 136.3 15.5 4.6
povray 1,223 535 23.1 14.5 334.7 146.3 89.1 43.3 15.8 11.4 23.1 14.5 50.7 23.0 15.8 11.4
parest 2,878 1,910 105.5 95.8 167.1 119.5 1.5 1.4 105.5 95.8 1.5 1.4 1.5 1.4 1.5 1.4
xalancbmk 8,711 6,424 57.0 24.2 4,308.0 1,463.8 699.7 48.8 57.0 24.2 31.7 15.4 31.7 15.4 31.7 15.4
nginx 3,966 2,023 16.4 10.0 1497.1 342.4 189.1 111.5 14.8 8.3 12.8 8.1 129.1 35.6 11.2 6.8
redis 4,891 1,098 4.0 2.3 570.3 47.4 167.2 60.4 3.3 2.0 2.8 1.8 94.0 9.1 2.3 1.6
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