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ABSTRACT
We present our experience of formally verifying the desired secu-

rity properties of the Uptane over-the-air (OTA) software update

framework against a set of applicable threat models. Uptane is gain-

ing traction in the automobile industry and is widely considered

the next de-facto standard for OTA automobile software updates.

The security of Uptane is of utmost importance because modern

automobiles rely on software for their safety-critical functionalities

and, especially, require OTA software updates to add new safety

features or patch bugs in existing ones. Design flaws in Uptane

can either violate the integrity of the updates to be installed or

prevent vehicles from installing new updates, both of which can

cause severe safety issues. Previous approaches to protocol veri-

fication either fail to capture the necessary features of Uptane or

suffer from termination issues due to Uptane’s complexity. A key

component of our approach lies in the eager combination of an

infinite-state model checker and a cryptographic protocol verifier,

where (in contrast to prior lazy approaches) we are able to eliminate

a key manual step in the workflow while enabling reasoning over

more fine-grained message structures. In addition, our approach

utilizes two proven soundness- and completeness-preserving state-
space-reduction optimizations for computational tractability, as well

as a meta-level analysis technique that makes it feasible to reason

over Uptane’s set of optional protocol features. Our approach is

able to discover six new vulnerabilities while rediscovering all five

known ones. While there have been previous analyses of Uptane’s

security properties, they either missed design flaws identified by

our approach or suffered from coverage and termination issues. The

Uptane standards body has positively acknowledged our findings

and has suggested updates to the protocol specification documents

to address them.
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1 INTRODUCTION
Safety-critical functions in modern automotive vehicles such as

airbag system activation, engine control, stability control, braking,

and more are now controlled by software [49]. In fact, the average

new car runs on a staggering 100 million lines of code [50]. There-

fore, vehicles must regularly perform software updates to patch

bugs and implement new features. Physically taking vehicles to

dealers for software updates can be both ineffective and impracti-

cal. It is thus preferable for next-generation automotive vehicles to

perform these updates over the air (OTA). OTA updates, however,

can be vulnerable to adversaries, as demonstrated by the compro-

mising of many major update repositories, including those run by

Apache, Debian, Fedora, and GitHub [20, 29, 30, 64]. Further, many

major auto manufacturers have suffered security vulnerabilities

allowing attackers to tamper with safety-critical functions such as

locking/unlocking, engine starting/stopping, and more [17, 19, 65].

Due to these issues, much work has been dedicated to securing

OTA updates [3, 5, 11, 12, 15, 22, 31, 34, 36, 41–43, 53, 56, 57, 59]. De-

viating from traditional computing devices, software in automotive

vehicles runs on electronic control units (ECUs), which have limited

computing power, secure remote communication capabilities, and

built-in security measures. An automotive OTA update protocol is
thus required to take these limitations into account.

Uptane [26, 41] is a proposed OTA protocol that seems set to be-

come the industry-standard framework for secure automotive OTA

updates. In fact, it is currently being integrated into Automotive

Grade Linux (AGL) [25], which has a huge share of the automotive

OS market and is used by manufacturers such as Toyota, Honda,

Ford, Nissan, Mercedes, and Audi [25]. In addition to AGL, Uptane

is supported by commercial software management platforms (e.g.,
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[1]) with major clients such as Infiniti, Renault, Bosch, and Con-

tinental. Because of this, a large proportion of vehicles on the road
will soon be using Uptane. Design-level protocol issues will become

much more problematic after large-scale deployment, as the cost

and technical difficulty of fixing protocol design bugs is dispropor-

tionately high at later stages of the development cycle. Thankfully,

we are currently in a unique window of opportunity to rigorously

analyze the protocol for bugs before it is widely deployed. Despite
the automotive industry’s large reliance on Uptane, its security has
not been studied comprehensively in the literature.
Problem and scope. Uptane claims to protect safety-critical sys-
tems from adversaries with a wide range of capabilities. Being a

framework, Uptane is designed to be compatible with a wide range

of automakers and ECU capabilities, meaning that there is consid-

erable freedom for implementers to make design decisions. Since

frameworks are specified at a high level of abstraction, design errors

can have sweeping consequences. Given this landscape, we answer

the following question: Can we apply formal verification to analyze
the Uptane framework with respect to a set of feasible adversaries in
order to increase confidence in its promised security properties and
discover underlying design issues? In our formal analysis, we con-

sider adversarial influence both (𝑖) within the vehicle’s internal

network and (𝑖𝑖) between the vehicle and remote communication

partners. The overall problem can be reduced to a protocol analysis
in the symbolic model where some or all of the above communication
channels are controlled by a Dolev-Yao [21] adversary.
Challenges. A comprehensive, fine-grained, terminating, and au-

tomated security analysis of Uptane warrants addressing the follow-

ing challenges: (1) long execution traces: the Uptane protocol in-
duces long execution traces when it is modeled exactly as described

in the standard documents, resulting in extremely long execution

times for the automated analysis; (2) properties referencing con-
crete payload values: analyzing Uptane requires reasoning about

fine-grained security properties that reference concrete values in

message payloads, which is a problem for both cryptographic proto-

col verifiers and current abstraction-refinement-based techniques;

(3) large number of problem instances to solve: when consider-

ing Uptane’s specific threat models, desired properties, and optional

features (i.e., 9 threat models, 8 properties, and 4 optional features),

a naive protocol verification approach for comprehensively analyz-

ing Uptane requires solving 1152 (= 9× 8× 2
4
) protocol verification

problem instances; (4) manual efforts: although manual efforts

needed for formally analyzing a protocol are unavoidable, especially

for formalizing the protocol design and collecting desired proper-

ties (i.e., inputs to the analysis approach), any protocol analysis

approach that requires manual intervention becomes prohibitive

when considering 1152 problem instances.

Note that these challenges apply to formal verification in general,

not just Uptane. In particular, since automated verification tools are

mostly black-box, remedying verification issues (in the form of non-

termination, excessive manual effort, etc.) takes expert knowledge,

and there is no one-size-fits-all solution. In our analysis of Uptane,

we found that none of prior approaches from the literature [32, 33,

37, 38, 41, 48, 51] were sufficient to address the above challenges

(see Section 3).

Approach. Our automated analysis approach takes three inputs,

namely, (a) a formal protocol model of Uptane, (b) a list of security

guarantees formalized as temporal safety properties, and (c) a threat

model. It then exhaustively checks whether the design satisfies all

the properties with respect to the given threat model. In case of

a violation, like any protocol verification approach, it outputs a

counterexample as an evidence of violation. Our overall approach is

aided by the following insights. We stress that although the insights
are demonstrated for the analysis of the Uptane protocol, they are
equally applicable to the analysis of other protocols.

❏ A highly automated, staged protocol analysis. Our staged anal-

ysis approach follows an abstraction-refinement paradigm where

a cryptographic protocol verifier (CPV) and a model checker are

eagerly combined. In contrast to prior lazy combination approaches
[32, 33], our approach enjoys a higher degree of automation due

to the use of an infinite-state model checker and a novel encoding

of a replay attacker. The key idea behind the eager combination

strategy is that one can identify relevant CPV lemmas, execute all

of them ahead of time, cache the results, and then execute the model

checking phase while incorporating the CPV’s feedback, without

any repeated work or manual intervention. This sort of analysis

allows us to perform a fine-grained reasoning over message payload

values with a very high level of automation. A detailed comparison

(see Table 3) with prior approaches is discussed in Section 3.

❏ Protocol step and input trace compressions. Our analysis takes
advantage of two optimization techniques: protocol step compression,
which coalesces different protocol steps into a single one, and input
trace compression, which only considers time steps where some-

thing meaningful happens. Although optimizations like these are

sometimes used in formal verification for computational tractabil-

ity, a differentiating factor in our work is that we have proven that

our optimizations preserve the correctness of the analysis. That is,

the optimized analysis will provably miss no attacks and never in-

troduce spurious ones in comparison to the unoptimized modeling.

(The proof is included in a separate technical document [47].)

❏ Meta-level protocol analysis. Our approach also enables a meta-

level analysis of optional features, reducing the manual efforts to a

feasible level. In particular, it allows us to formulate only 72 protocol

verification instances (instead of 1152) by considering all possible

combinations of the optional features together, which is a 16×
reduction. This meta-level analysis is facilitated by a new feature of

certainmodel checkers called blame assignment [45, 46], a technique
that determines a minimal set of boolean model parameters that

must be true in order to falsify a given property. In our case, the

boolean model parameters of interest are the protocol’s optional

features, where setting one of those parameter to true disables the
corresponding feature.

Prior Analyses of Uptane. An initial analysis of Uptane was pre-

sented by Boureanu [9]. Our analysis is more comprehensive with

respect to the set of threat models and desired security properties.

Additionally, Boureanu reports that the execution time for proving

some of the more difficult lemmas with the Tamarin verifier [51]

ranged from 20+ hours to non-terminating. In contrast, our novel

insights into automated protocol verification lead to termination

in under 10 minutes in a vast majority of cases. The difference
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between our approach and Boureanu’s [9] is discussed in depth in

Section 3 and outlined in Table 8 in the appendix.

Other Related Work. Other applications of formal verification to

Uptane [37, 38, 48] are discussed in Section 8. More generally, state-

of-the-art approaches to formal verification of security protocols

include symbolic model verification [8, 51], computational model
verification [4, 7], and an abstraction-refinement paradigm [32, 33]

that combines symbolic model verification with general-purpose

model checking. Blame assignment [45, 46] is a meta-level anal-

ysis technique which we discussed in the Approach paragraph.

Compression techniques make system models more amenable to for-

mal verification tools by minimizing the length of counterexample

traces (e.g., [2] with “step compression”).

Evaluation and Findings. The novel aspects of our work allow

us to achieve termination in 69 of 72 attempted protocol verification

instances (see Table 5) when comprehensively analyzing the Uptane

protocol design. We achieve termination on more instances than

other approaches, as discussed later. All our models are publicly

available at https://github.com/lorchrob/UptaneModels.

Our analysis rediscovered five known attacks, which is an initial

validation of the correctness of the approach. In addition, we dis-

covered six new vulnerabilities (see Table 6), all confirmed by the

standards body, which allow adversaries to prevent vehicles from

installing new updates and also cause vehicles to install the wrong

updates.

Contributions. In summary, the paper makes the following tech-

nical contributions: (𝑖) a formalization of the Uptane protocol from

a natural-language specification containing gaps and ambiguities;

(𝑖𝑖) six new security vulnerabilities in the protocol; (𝑖𝑖𝑖) proofs for the
absence of attacks with respect to our model for 14 combinations

of properties and threat models; and, more generally, (𝑖𝑣) a novel

workflow that enables the faithful modeling of a variety of adver-

sarial scenarios and optional protocol features in a cryptographic

setting.

2 PRELIMINARIES
System description. Uptane aims to protect the ECU software up-
date process, focusing specifically on the delivery and verification

of software updates. Figure 1 gives an example ECU network ar-

chitecture with two network segments (called buses): a Controller
Area Network (CAN) bus and a Local Interconnect Network (LIN)

bus. Different network segments are connected by gateway ECUs
that forward traffic from one bus to another.

ECUs updates are usually installed OTA. Since many ECUs lack

computing power, only a small number of the ECUs connect to a

remote repository over the internet to retrieve new software images

for themselves and other ECUs in the vehicle. The new images are

distributed to the other ECUs over the buses.

ECU 1 ECU 2 ECU 4ECU 3

ECU 5 ECU 6 ECU 8

Gateway 
Ecu

CAN Bus

LIN Bus

Internet

ECU 7

Figure 1: Example ECU Network Architecture

Motivation. Automotive buses were designed with efficiency and

convenience in mind, so they do not include built-in security fea-
tures [10]. Therefore, compromising even a single ECU renders the

vehicle’s internal network vulnerable to man-in-the-middle attacks.

Many techniques to compromise ECUs are completely remote. Some

common attack vectors are through the OBD-II port, vehicle enter-

tainment systems (e.g. CD drive, USB port), keyless entry systems,

and bluetooth and cellular channels [14].

Most efforts in automotive bus security have focused on CANs.

Efforts in CAN security [6, 24, 40, 52, 54, 55, 60, 61, 67] employ a

threat model where the adversary can arbitrarily read, drop, and

inject messages in communications between ECUs. Notably, the

model allows ECU impersonation attacks, where non-safety-critical
ECUs can drop CAN packets sent by safety-critical ECUs or inject

CAN packets that impersonate safety-critical ECUs [18, 24, 66].

Other studies in automotive bus security are surveyed by El-Rewini

et al. [23] — for example, LIN bus message injection attacks in-

volving the error handling mechanism [63]. There are recent news

stories of thieves using CAN injection attacks to steal (relatively

new) cars [17, 65].

Several studies show realistic man-in-the-middle (MiTM) attacks

between an ECU and a communication partner outside the vehicle.

For example, Rouf et al. [58] demonstrates a remote attacker’s ability

to tamper with the tire pressure monitoring system by spoofing

ECU sensor data, while Köhler et al. [39] involves a remote attacker

executing a DoS attack on EV charging through a MiTM attack on

the charging protocol.

2.1 Uptane Background
In the Uptane [26, 41] ecosystem (see Figure 2), each vehicle has a

primary ECU that communicates with two remote repositories, the

director and image repositories. The director repository provides

metadata about the software images the ECUs should install. An

additional set of metadata, and the images themselves, are retrieved

from the image repository. ECUs cross-reference metadata from

both repositories, enabling the detection of an attack when only

one of the repositories is compromised. These checks on the meta-

data are called metadata verification, and they are performed by all

ECUs in the vehicle. There are four types of metadata: root, times-
tamp, snapshot, and targets. Some pieces of data are present in every
metadata file, including a metadata version number and expiration

timestamp. For specifics about other information contained in meta-

data files, consult Appendix B. The primary ECU downloads and

verifies images and metadata, which it then distributes to the other

ECUs in the vehicle, the secondary ECUs. If an ECU is compromised,

other ECUs may still resist downloading malicious software, as each

ECU performs its own verification. Thus, verification is performed

twice on metadata and images for secondary ECUs — once by the

primary ECU, and once by each of the secondary ECUs.

Uptane Update Process. An ECU’s software update process can

roughly be divided into three stages: (𝑖) update discovery, (𝑖𝑖)
metadata verification, and (𝑖𝑖𝑖) image verification and acquisition.

A high-level Uptane description is given in Figure 8 in the appendix.

Update discovery: In this phase, new images are selected for the

ECUs to install. This selection is performed by the director repos-

itory, which retrieves information about the vehicle’s currently

https://github.com/lorchrob/UptaneModels
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Figure 2: Simplified system architecture of Uptane.

installed information (aka vehicle version manifest or VVM, for

short) and performs dependency resolution to select new updates.

Metadata verification: In this stage, ECUs process metadata from

both remote repositories, applying verification procedures to ensure

that the metadata is not tampered with.

Image verification and acquisition: In this stage, ECUs apply a

verification procedure to the new images retrieved from the image

repository. If this verification is successful, then the ECU installs

the new image. If any of the steps above fails, the offending file

(metadata, image, or VVM) is discarded and the cycle is restarted

with a fresh update discovery. For concrete steps regarding the

above stages, consult Appendix B.2.

Metadata verification is flexible for secondary ECUs. Secondary

ECUs with less computing power may choose to verify, at a mini-

mum, only targets metadata files from the director repository (par-
tial verification), rather than verifying the full set of metadata. In

our analysis, we model the entire Uptane system but focus on the

security properties of secondary ECUs performing minimal partial

verification. Uptane claims to offer flexibility without compromising

security, and we put this claim to the test.

We omitted from the above discussion another type of verifica-

tion: verification of the latest time. Since ECUs often do not have

accurate internal clocks, the Uptane system allows for a remote

attestation of the latest time, which ECUs must verify before per-

forming metadata verification. However, the specifics of the ECUs’

access to time are not discussed in the Uptane specification; instead,

the source of time is assumed to be secure. In our analysis, we

consider the possibility of a man-in-the-middle attack between the

ECU and the (remote) secure source of time.

3 PROBLEM DEFINITION AND CHALLENGES
The underlying problem we solve requires formally analyzing the

newest version of the Uptane protocol (version 2.1) with respect to

a set of properties and a set of threat models. We discuss them both

in this section, together with the technical challenges they pose.

Desired Functional Properties.We consider eight integrity prop-

erties. We do not model confidentiality or availability properties as

such properties are not promised by Uptane. The first two properties

relate to freshness, stating that ECUs and remote repositories will

not accept old versions of files when newer versions are available.

Attack Type Possible Implications
Freeze (P1) Expose deprecated vulnerabilities

VVM Replay (P2) Expose deprecated vulnerabilities,

hampered vehicle functionality

Rollback (P3) Expose deprecated vulnerabilities

Arbitrary Software (P4) Adversary control over vehicle

Attacker-Authored VVM (P5) Expose deprecated vulnerabilities

Mix-And-Match (P6) Hampered vehicle functionality

Mixed-Bundles (P7) Hampered vehicle functionality

Incompatible Image (P8) Hampered vehicle functionality

Table 1: Possible implications of attacks

P1. ECUs only verify the latest available targetsmetadata (checks

for freeze attacks).
P2. The director repository only verifies the latest available ve-

hicle version manifest (VVM, containing information about

each ECU’s currently installed image) that was sent by the

vehicle (checks for VVM replay attacks).
If these properties are violated, the ECUs will continue to run old

software images that potentially contain known bugs or security

vulnerabilities which could be exploited by an adversary in an-

other attack. Possible implications of the attacks under analysis are

outlined in Table 1.

The remaining properties are about ECUs installing the correct

software images. Violating them could result in ECU installing (𝑖)
older images with known vulnerabilities, (𝑖𝑖) adversary-authored
images, or (𝑖𝑖𝑖) images with compatibility issues. This can lead to a

degradation in vehicle functionality or, in the worst case, adversary

control over the vehicle.

P3. ECUs always verify images in nondecreasing version order

(checks for rollback attacks).
P4. ECUs never verify adversary-authored software (checks for

arbitrary software attacks).
P5. Remote repositories never verify VVMs containing version

reports that were authored by an adversary (checks for

attacker-authored VVM attacks).
P6. ECUs never verify metadata instructing installation of an in-

compatible set of images (checks for mix-and-match attacks).
P7. ECUs always have a compatible set of installed images

(checks for mixed-bundles attacks).
P8. ECUs never verify images incompatible with their own hard-

ware (checks for incompatible image attacks).
Threat models. We consider an adversary who can read, mod-

ify, inject, and drop protocol packets within the vehicle’s internal

network and between the vehicle and remote communication part-

ners, all the while conforming to cryptographic assumptions. This

problem reduces to protocol analysis in the symbolic model where

selected components (including components within the vehicle) are

assumed to be under the influence of a Dolev-Yao[21] adversary.

We consider the following threat models with various adversarial

capabilities. Each threat model contains a set of man-in-the-middle

attackers (see Figure 2) and access to specified compromised keys.

B. The benign case (no adversary).
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Adversarial
Capability

Feasibility

A1 message reading [58], [39]

A1 message injection [58], [39]

A1 message dropping [58], [39]

A2 message reading [6, 18, 40, 52, 54, 61, 63, 67]

A2 message injection [6, 18, 24, 40, 52, 54, 61, 63, 65, 67]

A2 message dropping [40, 54, 61, 63]

A3-A6, A* key

compromise

discussed in Section 9

A# supply chain attack [16, 35, 62]

Table 2: Feasibility of Adversarial Capabilities. A1 operates
outside the vehicle, while A2 operates also inside (Figure 2).

A1. The adversary can perform MiTM attacks on network con-

nections outside the vehicle (A1 in Figure 2), but not in the

vehicle’s internal network.

A2. The adversary can perform MiTM attacks outside and inside
the vehicle (A1 and A2 in Figure 2).

A3. As in A2 but the adversary has also access to compromised

director repository metadata signing keys.

A4. As in A3 plus adversary access to compromised image repos-

itory timestamp and snapshot metadata signing keys.

A5. As in A4 plus access to compromised image repository tar-

gets metadata signing keys.

A6. As in A5 plus access to compromised image repository root

metadata signing keys.

A*. As in A1 plus access to the compromised VVM signing key

used by the primary ECU.

A#. The adversary has compromised the supply chain (A# in

Figure 2).

References to justifications for the technical feasibility of each of

these adversarial capabilities are listed in Table 2.

Need for Different Threat Models
While the Dolev-Yao [21] model is generic enough to capture
the behavior of all of the above threat models, we still must
specify which network connections are susceptible to a Dolev-
Yao attacker, as well as which cryptographic keys the Dolev-Yao
attacker is assumed to have access to.

3.1 Technical challenges
We now illustrate technical challenges by discussing the shortcom-

ings of five existing protocol verification approaches: (1) manual
analysis, (2) cryptographic protocol verification in the computational
model, (3) cryptographic protocol verification in the symbolic model,
(4) model checking, and (5) the abstraction-refinement paradigm,

which lazily combines a symbolic model checker and a symbolic

cryptographic protocol verifier.

(1)Manual Analyses. A naive approach is to manually analyze

the protocol to verify its security properties. However, our results

(discussed in Section 7) provide strong evidence that manual analy-

sis can miss violations easily identified by automated reasoning.

(2) Computational Cryptographic Protocol Verifiers. Pro-
tocol verifiers in the computational model (e.g., [4, 7]) represent
protocol messages as bitstrings, and cryptographic operators as

functions from bitstrings to bitstrings. However, this precise, low-

level modeling imposes a cost — high manual effort. For Uptane,

this difficulty is exacerbated by the presence of optional features,

which exponentially increase the required modeling effort. In this
paper, we instead focus on techniques with high automation.

(3) Symbolic Cryptographic Protocol Verifiers. Protocol

verifiers in the symbolic model (e.g., [8, 51]), in short CPVs, as-
sume cryptographic building blocks to be secure (i.e., the perfect
cryptography assumption). CPVs only reason about the composition

of cryptographic primitives, making the protocol verification task

more amenable to automation. We tried this approach first, with

the Tamarin CPV [51], but we faced two major challenges. The first,

which we will call C1, is that the analysis failed to terminate. One

reason for this is that the search space is large, as Uptane’s update

process includes a minimum of 10 steps in total (one for VVM ver-

ification, one for each metadata file for each repository, and one

for image verification), each relying on ECU or repository state.

Specifically, the CPV analysis times out when attempting to prove

properties that require reasoning over multiple verification cycles

(causing long execution traces). The second reason is that Uptane

requires fine-grained modeling of infinite-domain data types, arith-

metic operations, and temporal operators (e.g., not just standard
correspondence and injective-correspondence proofs over symbolic

messages). While Tamarin supports these features, the analysis was

not scalable enough for Uptane. To address the termination issue,

we employed custom heuristics (a Tamarin oracle) to help the CPV’s

proof search, but it was not sufficient for termination.

The CPV termination issue C1 is also observed by Boureanu in

a recent formal analysis of Uptane using Tamarin [9]. In her anal-

ysis, powerful compute servers (400GB RAM) were needed, and

some proofs still took 20+ hours to complete or failed to terminate.

Compared to this approach, ours gives a better performance, even

across a wider set of threat models and desired security guarantees

in a commodity laptop. For example, [9] considers a hierarchy of

five threat models, where the more powerful adversaries can com-

promise more components of the model (key compromise is not

independently considered). Compared to this, our threat hierarchy

of nine threat models is more fine-grained, as it explores all possible

key compromises. While it may seem like our threat models do

not analyze component compromise, it is equivalently captured by

the compromise of all the component’s keys (e.g., threat model A*

effectively models a primary ECU compromise). Additionally, [9]

considers seven security properties, three of which are from the

standard (relating to confidentiality, denial-of-service, and arbitrary

software attacks), and four of which they independently formulated

(one dealing with privacy, and two dealing with agreement/syn-

chronization between model components). However, two of the

properties from the standard (confidentiality and denial-of-service)

are trivially broken, and one of the independently formulated prop-

erties is very close to protection from freeze attacks (from the

standard). We consider eight security properties, not including the
two trivial ones, including five from the standard and three inde-

pendently formulated. The three that we formulated relate to VVM
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replay attacks and image installation, and thus have a much higher

potential impact if broken (because they relate to update integrity).
Table 8 in the appendix summarizes the comparison of the two

approaches.

Impact of Non-termination
If the analysis does not terminate for a given Uptane problem in-
stance (defined by a property, threat model, and a set of optional
features), we cannot conclude anything about the property un-
der the threat model for the Uptane protocol design, leaving a
potentially undiscovered vulnerability.

Another challenge (C2) is that Tamarin is unable to efficiently

perform a meta-level search over the Uptane framework’s set of

optional features. That is, our initial attempt only covered one spe-

cific instantiation of the framework. However, we seek to analyze

the entire set of all possible (1172) instantiations.

(4) Model checking. Another tool-based approach is to use

a general-purpose model checker for protocol analysis. General-

purpose model checkers excel in fine-grained modeling of infinite-

domain data types, arithmetic operations, and temporal operators

compared to CPVs. We tried this approach this using Kind 2 [13].

However, Kind 2 (as expected) produces cryptographically infeasi-

ble attack traces, as it is not designed to reason about Dolev-Yao

adversaries. In addition, Kind 2 had non-termination issues due to

long execution traces (C1).
(5) Abstraction-Refinement. A fifth approach is the abstr-

action-refinement paradigm [32, 33], which in this case involves

the lazy combination of a cryptographic protocol verifier and a

general-purpose model checker. The purpose of the approach is

to achieve efficient fine-grained reasoning with a model checker,

while reasoning about cryptographic aspects with a CPV. In short,

the approach consists in using a model checker to find an attack

trace and then invoking a CPV to determine if the counterexam-

ple trace is cryptographically feasible. If it is, the trace returned

by the model checker describes a potential attack. If it is not, the

falsified property is updated to block the infeasible counterexam-

ple. Unfortunately, even this approach is fundamentally unable

to perform a rich, detailed analysis. Its first challenge, denoted

by C3, is that it relies on predicate abstraction over message pay-

load data. However, in the Uptane use case, an analysis of con-

crete payload values is required because the desired system-level

properties involve arithmetic constraints over packet values (e.g.,
counters, version numbers, and timestamps). For example, one

system-level safety property is protection from rollbacks, formu-

lated as new_ecu_img.version ≥ curr_ecu_img.version. Here,
new_ecu_img.version is part of an incomingmessage payload and

must be modeled as an integer to accurately capture the property.

This approach also suffers from C2, as it does not have support for
a meta-level search over optional features in an automated, scal-

able way. Additionally, the approach does not address C1, as the
execution traces are still infeasibly long and cause non-termination

issues. Finally, this approach requires an undesirably high number

of manual interventions in the workflow (C4).
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4 APPROACH OVERVIEW
From the above approaches, we consider the abstraction-refinement

paradigm to be the most promising as it can reason about both cryp-

tographic and rich protocol features (e.g., statefulness, constraints
over payloads). However, we still face four core challenges: long

execution traces cause non-termination (C1); there is no mecha-

nism for meta-level analysis over optional protocol features (C2);
message payload data is modeled with predication abstraction, dis-

allowing analysis of concrete payload values (C3); and there must

be manual intervention for every counterexample trace generated

by the model checker (C4). We provide a high-level description of

our approach and explain how it is a fundamental improvement

over prior work [32, 33] next, using a running example.

4.1 High-level Approach Overview
The high-level approach is outlined in Figure 3. In step 1○, we con-

struct a CPV model by consulting the Uptane standards document.

In the CPV model, we abstract away control flow and statefulness,

only modeling the cryptographic aspects of the protocol. In step

2○, we consult CPV to determine the adversary’s cryptographic

capabilities, generating a report (step 3○). For example, the adver-

sary may not be able to modify messages arbitrarily, as this could
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result in breaking cryptographic assumptions (e.g., an adversary

forging a digital signature without knowledge of the corresponding

secret signing key). In step 5○, we create system S and model the

desired properties by consulting the Uptane standards document.

Wemodel an adversary who modifies messages sent between model

components (protocol participants). Based on the CPV report from

step 3○, we instrument each of S’s network connections in step 4○
by making each connection vulnerable to either (𝑖) no attacks, (𝑖𝑖)
only replay attacks (i.e., by adversaries that can only replay past

messages but not inject new messages), or (𝑖𝑖𝑖) arbitrary injections

attacks (from unrestricted adversaries). Specifically, if CPV’s corre-

sponding weak authentication lemma is disproven, we consider a

standard attacker, where the injection of arbitrary messages is pos-

sible. If CPV’s corresponding weak authentication lemma is proven

but the injective authentication lemma is disproven, we consider a

replay attacker, as replays are feasible but new message injections

are not. If CPV’s injective authentication lemma is proven, then we

mark the connection as invulnerable to all attacks, as even replays

are infeasible. The relationship between the CPV lemma results

and adversarial capabilities is outlined in Table 4. In step 6○, we

execute the model checker with the corresponding threat model

and property. Either the property is verified (step 7a○), or there is a

counterexample trace (step 7b○).

Contrast Between Lazy and Eager Approaches
The lazy approach (see Figure 4) requires crossing back into the
CPV verification stage through arrow 3b (a manual backtrack-
ing step). This is completely eliminated in the eager approach
(see Figure 3).

4.2 Our Approach with Working Example.
We view our approach as an idealized version of the prior

abstraction-refinement paradigm [32, 33]. We walk through a work-

ing example, pointing out when one of the challenges C1, . . . ,C4
arises. In this section, instead of immediately explaining how each

challenge is addressed, we simply assume that there exists some

way to overcome it. We will outline our novel insights and how

they enable us to overcome each challenge in the next section.

We will walk through a simplified version of the analysis of de-

sired functional requirements P3 and P6, using the idealized work-

flow. In English, the properties are “ECUs always verify images in

nondecreasing version order” and “ECUs never verify metadata that

instructs them to install an incompatible set of images,” respectively.

Both analyses are primarily concerned with the secondary ECUs’

verification of targets metadata, which is graphically illustrated in

Figure 5. Specifically, Figure 5 illustrates the high-level steps taken

by the various components, numerically indexed to indicate the

order of execution. Additionally, the pseudocode describes some of

the finer details of each component’s local actions. At a high level,

targets metadata is first generated and sent from both repositories

to the primary ECU. The ECU performs verification of both meta-

data files individually, and also performs a cross-reference of the

two files to hedge against either repository (or the connection to

either repository) being compromised. Finally, the primary ECU

sends targets metadata to the secondary ECU, which performs its

own verification of metadata. However, in this case, the secondary

ECU only processes the director repository’s metadata, so cross-

referencing is not possible.

We start with an analysis of P6. In this case, we are assuming

threat model A3 (internal adversary with compromised director

targets metadata keys).

Create CPV Model. We construct a CPV model by consulting the

Uptane standards document.

Execute CPV. For P6, the most relevant lemmas are those corre-

sponding to (𝑖) sending targets metadata from the director reposi-

tory to the primary ECU (step 1○), and (𝑖𝑖) sending targets metadata

from the primary ECU to the secondary ECU (step 4○). In both cases,

the strong authentication lemma fails, meaning that targets meta-

data replays are cryptographically feasible. However, in case (𝑖𝑖),
the weak authentication lemma also fails with a counterexample

trace where the adversary injects an arbitrary targets metadata file,

and it is still verified by the secondary ECU.

Create Model Checker (MC) Model. We create system S by

consulting the Uptane standards document. We assume, in an ideal
world, that the model is constructed such that counterexample traces
are short and that message payload data is modeled concretely (with-
out predicate abstraction), addressing C1 and C3.
Specify MC Threat Model. In our example, the results from the

CPV model mandate that a replay attacker should be placed on the

connection from the director to the primary ECU (step 1○), and

a standard attacker should be placed on the connection from the

primary ECU to the secondary ECU (step 4○).

Execute MC. We execute the model checker with the correspond-

ing threat model. We assume, in an ideal world, that there is a meta
analysis which automatically determines which optional protocol
features (if any) contributed to the property violation, addressing C2.

For P6, MC produces a counterexample (with no optional features

disabled) where an adversary injects a targets metadata file on the

connection between the primary ECU and the secondary ECU (step

4○). This metadata file contains instructions for the ECUs to install

an incompatible set of images, representing a violation of P6.We
assume, in an ideal world, that for analyzing P3, we do not have
to repeat steps “execute CPV” and “specify MC threat model.” This
addresses challenge C4.

Verify and cross-reference 
metadata files

Send targets 
metadata

Send targets 
metadata

Send targets 
metadata

Verify targets 
metadata

1

2

3

4

5

if !valid_sig(new_targets_img):
abort

if !valid_sig(new_targets_dir):
abort

if targets_img.img_data == targets_dir.img_data:
targets_dir := new_targets_dir
targets_img := new_targets_img
send_to_sec(new_targets_dir)

if !valid_sig(new_targets_dir):
abort

else:
targets_dir := new_targets_dir

new_targets_dir := gen_valid_bundle(VVM)
send_to_pri(new_targets_dir)

send_to_pri(new_targets_img)
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Figure 5: Simplified Targets Metadata Verification Overview.

4.3 Working Example (Prior Work)
We now analyze P3 and P6 again, this time with the approach in

[32, 33], to further illustrate the extra manual steps it requires. We
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Characteristic Our approach Hussain et al.
[32, 33]

Tamarin [51]

MC + CPV

combination

strategy

Eager Lazy NA

Type of

instrumentation

Model

instrumentation

Property

instrumentation

NA

Concrete

message

payload?

Yes No Yes*

Meta-level

analysis (blame

assignment)?

Yes No No

Compression

with

meta-theorem?

Yes No Yes*

* With scalability issues

Table 3: Comparison of various approaches

start with P6, assuming threat model A3 (internal adversary with

compromised director targets metadata keys).

Execute MC.We start with executing the cryptography-agnostic

MCmodel. In this case, MC generates a counterexample trace where

a targets metadata file is injected on the connection between the

director repository and the primary ECU (step 1○).

Execute CPV. We must check the cryptographic feasibility of the

attack. In this case, the weak authentication lemma for targets

metadata being sent from the director to the primary is proven

(step 1○), so the trace is a spurious counterexample.

Property Instrumentation. To address the spurious counterex-
ample, 𝑃6 is instrumented to state “If there is no arbitrary targets

metadata injection on the connection from the director to the pri-

mary, then ECUs never verify metadata that instructs them to install

an incompatible set of images.”

Execute MC. We invoke MC again with the updated property,

generating a trace where the targets metadata file is injected on the

connection from the primary ECU to the secondary ECU (step 4○).

Execute CPV. Again, we check for cryptographic feasibility. Here,

the weak authentication lemma for targets metadata sent from the

primary ECU to the secondary ECU fails, so the attack is crypto-

graphically feasible. To analyze P3 in the lazy approach, the
above five steps all have to be repeated. This is, in part, because

the updates to our system model that block cryptographic traces

were property-specific, i.e., our analysis for P6 does not carry over

to P3. Further, this is not the only problem. As discussed in the pre-

vious subsection, the abstraction-refinement paradigm still lacks

mechanisms for dealing with long execution traces (C1), perform-

ing meta-level analysis over optional protocol features (C2), and
modeling message payload data without predicate abstraction (C3).

5 TECHNICAL INSIGHTS
In this section, we present an overview of our key technical in-

sights and how they enable the idealized workflow described in the

previous section. We outline the differences between our approach

and that of Hussain et al. [32, 33] in Table 3.

Relationship between
attacker capabilities
and Auth. Lemmas

Auth. Lemmas Proven (✓)/
Falsified(×) by CPV

Weak Auth.
Lemma

Strong Auth.
Lemma

Message injection,
replay both possible × ×

Message replay possible,
not injection ✓ ×

Neither
possible ✓ ✓

Table 4: Relationship between Authentication Lemmas and
Attacker Capabilities (i.e., message injection, message replay)

Insight 1: Compression. To address𝐶1, we introduce two com-

pression techniques, input compression and model compression,
which dramatically reduce the length of execution traces. The core

ideas are that (𝑖) stuttering can be eliminated from modeling, and

(𝑖𝑖) multiple Uptane protocol steps can be coalesced into a single

step while provably preserving semantic correctness with respect

to the properties under analysis. In Hussain et al., the length of at-

tack traces makes analysis intractable. However, with compression,

attack traces are limited to a quarter of the length as compared

to without compression, leading to termination in more cases (see

Table 5). A detailed discussion of compression is in Section 6.

Insight 2: Blame Assignment. To address C2, we model op-

tional security-enhancing features symbolically as Boolean param-

eters in our model and use the blame assignment feature of the

Kind 2 model checker [45, 46] for fine-grained information about

the features that are insufficient for protecting against a certain

attack. The blame assignment functionality on a model attempts to

find a minimal truth assignment of some given Boolean parame-

ters that is sufficient to trigger a violation of the property. In the

truth assignment identified by blame assignment, having value true
for the Boolean parameter corresponding to an optional feature

suggest that the protocol should disable that feature. As a concrete

example, consider two optional features in Uptane: (𝑖) repositories
should increment version numbers of metadata files when they

are updated, and (𝑖𝑖) targets metadata should include image ver-

sion numbers. With two optional features, there are four concrete

protocol instantiations (an example instantiation is to require that

version numbers are incremented, but allow targets metadata files

to forgo version numbers). In Hussain et al.’s approach, the entire
workflow has to be replicated for each optional feature (in gen-

eral, 2
𝑛
times for 𝑛 optional features) to determine which optional

features must be disabled for which attacks.

Impact of Blame Assignment
In our approach, a single run of the workflow is comprehensive,
as the model checker’s blame assignment feature searches for
attack traces that minimize the number of disabled optional fea-
tures. In our Uptane analysis, we consider four optional features,
with a 16-fold reduction in the manual analysis effort.
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Insight 3: Replay Attacker. The most common approach of in-

corporating an abstract version of Dolev-Yao-style adversary is to

place a component between every public communication channel

that can non-deterministically modify the data being sent through

the channel. Without further behavioral restrictions, this adversary

actually violates the requirement of the original Dolev-Yao model as

it may not conform to cryptographic assumptions (e.g., decrypting
a ciphertext without possessing the decryption key). In particular,

when the CPV analysis suggests that the attacker can only replay

packets but cannot forge new packets, placing a replay attacker is

more accurate. We designed a non-trivial way to explicitly capture

the behavior of a bounded or unbounded replay attacker (see In-
sight 6 and Appendix D for more details). The use of the replay

attacker helps us address both 𝐶4 and 𝐶3.

Insight 4: Eager combination with Replay Attacker. To ad-

dress 𝐶4, we optimize the workflow from Hussein et al. [32, 33],
reducing the number of manual steps. One major difference regards

the combination of theMC and CPV analyses. Those previousworks

combine them lazily as they account for cryptographic influence

through property instrumentation of the form 𝛼 → 𝛽 , where 𝛽 is

the property under consideration and the antecedent 𝛼 rules out

cryptographically infeasible traces. In contrast, we combine the two

analyses eagerly, accounting for cryptographic influence through
model instrumentation with the replay attacker.

We demonstrate how we differ with an example. Suppose the

existence of four functions, 𝑓 , 𝑔, 𝑎𝑑𝑣 , and𝑚𝑎𝑖𝑛 : Z→ Z, where we
want to prove some properties about the output of𝑚𝑎𝑖𝑛:

𝑓 (𝑥) = |2𝑥 | 𝑎𝑑𝑣 (𝑥) = ???

𝑔(𝑥) = 3𝑥 𝑚𝑎𝑖𝑛(𝑥) = 𝑔(𝑎𝑑𝑣 (𝑓 (𝑥)))

We aim to analyze the output of𝑚𝑎𝑖𝑛, which composes 𝑔 and 𝑓

through 𝑎𝑑𝑣 , where 𝑎𝑑𝑣 models an adversarially-controlled func-

tion. In this setting, 𝑎𝑑𝑣 is an uninterpreted function, that is, a func-
tion whose signature is known but its semantics is not. This sim-

ulates the modeling of an adversary whose capabilities are only

knowable by consulting an oracle (representing a CPV). Assume in

this case that it is only possible for 𝑎𝑑𝑣 to return even integers.

Suppose then we want to verify two properties 𝜑1 and 𝜑2 using a

suitable automated reasoner (for instance, an SMT solver), where𝜑1
states that the output of𝑚𝑎𝑖𝑛 is always even and 𝜑2 states that the

output of𝑚𝑎𝑖𝑛 is always positive. With no adversarial influence, i.e.,
when 𝑎𝑑𝑣 is the identity function, both properties trivially hold. In

the lazy approach, the behavior of 𝑎𝑑𝑣 is initially unconstrained. So,

in the first SMT query for 𝜑1, a spurious counterexample is raised

where 𝑎𝑑𝑣 returns -1 (or in general, any odd negative number). The

counterexample is manually inspected to find that the property

failure was due to the injection of an arbitrary value. Only then

does the lazy approach invoke the oracle and determine that 𝑎𝑑𝑣 ’s

behavior was infeasible. Consequently, 𝜑1 is instrumented to rule

out the attack and rewritten in the form of 𝛼 → 𝜑1, where the

antecedent 𝛼 specifies that 𝑎𝑑𝑣 must return an even integer. An

inefficiency of this approach is that when querying 𝜑2, the same ini-

tial counterexample (where 𝑎𝑑𝑣 returns -1) is raised, but the manual

work of counterexample inspection and property instrumentation

has to be duplicated for 𝜑2.

We improve this process by invoking the CPV ahead of time and

specifying 𝑎𝑑𝑣 ’s behavior in the model, not the property, by giving

𝑎𝑑𝑣 a concrete definition. This minimizes manual trace inspections

and completely avoids the need to block similarly infeasible coun-

terexamples multiple times. In other words, the lazy approach from

Hussain et al. involves twice as much manual work in this example

than our approach: two CPV invocations and property instrumen-

tations against just a single CPV invocation and model instrumen-

tation. If the CPV results indicate that protocol components are

vulnerable to message replays, then model instrumentation is per-

formed using the replay attacker, discussed previously. (If protocol

components are vulnerable to injections of arbitrary messages, we

use the standard technique of placing an adversarial component

that can arbitrarily, nondeterministically modify messages sent

between components, as discussed in Insight 3.)

Significance of the Eager Approach
If there are 𝑛 counterexamples targeting the same cryptographic
vulnerability, the eager approach takes 𝑛 times less manual
effort than prior work [32, 33].

Insight 5: Context Independence. We improve the approach

further to address 𝐶4. We note that in general, we cannot rely on

CPV’s output without manually inspecting counterexample traces.

For example, if CPV says that a replay attack is possible, then

manual analysis of counterexample traces is needed to determine

if the attack is generalizable, or if it can only take place under

specific circumstances. If it is the latter, the adversary’s behavior

cannot be accurately modeled with a replay attacker, as additional

restrictions are needed on the adversary’s behavior. In our analysis

of all the CPV lemma counterexamples, we found that they were all

generalizable, i.e., context independent. This enabled us to invoke

the CPV only once for each lemma in the workflow, rather than

having to revisit the CPV for each discovered attack.

Insight 6: Payloads with Replay Attacker. To address𝐶3, we

appeal to the principle of maximum logical revelation, which states

that as many details as possible should be captured in the structure

of logical formulae, rather than being abstracted away in the atoms.

The replay attacker, described previously, is not restricted to any

specific datatype, so it can naturally reason over concrete (e.g., inte-
ger) values in message payloads. This was not feasible in Hussein

et al. [32, 33] because their strategy of accounting for adversarial

influence in the system model relies on predicate abstraction.

Consider adding a restriction to our Uptane systemmodel that an

arbitrary (previously unseen) ECU version report cannot be injected

on the connection from component 𝐴 to component 𝐵. For simplic-

ity, assume the ECU version’s payload can be accurately modeled

with a pair of natural numbers ⟨𝑎, 𝑏⟩. In Hussain et al.’s approach,
the report is abstracted into a Boolean variable v_rep, and a prop-

erty 𝜑 is instrumented to (Inject(v_rep) ⇒ Once(v_rep)) ⇒ 𝜑,

blocking the injection of v_rep unless it has been sent before. This

does not naturally extend to a more precise model of v_rep as a pair
of natural numbers. Below, suppose v_rep′ represents the value of
the version report injected by the adversary. Blocking the injection
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if mode = verify_timestamp and valid_timestamp:

new_timestamp := incoming_timestamp

new_mode := verify_snapshot

else: 

new_timestamp := old_timestamp

new_mode := verify_root

if valid_root and valid_timestamp:

new_timestamp := incoming_timestamp

else: 

new_timestamp := old_timestamp

t1 t2 t3

Input

t1 t2 t5t3 t4

No input Input

Figure 6: Illustration of Input and Model Compression.

of every pair of natural numbers with property instrumentation is

not feasible, as it requires an infinite case split:

(Inject(v_rep′) ∧ v_rep′ = ⟨0, 0⟩ ⇒ Once(v_rep = ⟨0, 0⟩)) ∧
(Inject(v_rep′) ∧ v_rep′ = ⟨0, 1⟩ ⇒ Once(v_rep = ⟨0, 1⟩)) ∧

. . .

⇒ 𝜑

The replay attacker, described previously (Insight 3), is thus necessary
to model replay attacks generically over infinite domains.

6 MODEL AND INPUT COMPRESSION
Motivation for Compression. Our model S of the Uptane frame-

work is complex enough to make model checking unfeasible. The

model checker times out for 12 system-level property/threat model

combinations. To speed up the automated analysis of the model,

we apply the model compression techniques described below.

We apply two types of compression, input compression andmodel
compression, graphically illustrated in Figure 6. Intuitively, input

compression only considers meaningful time steps, where input

is provided at the system level. In contrast, model compression

coalesces multiple protocol steps into a single step. Both types of

compression reduce the length of verification steps (and hence, of

attack traces).

Without compression, MC can only verify the absence of attacks

in five of the eight properties in the benign case. With compression,

all eight are verified, and we also get five additional proofs for

the absence of attacks in other threat models. We denote by Ŝ the

compressed model and by S+
the model obtained by instrumenting

S with Dolev-Yao adversaries at selected communication points.

Let then Ŝ+
denote the instrumented version of Ŝ.

The results obtained with the compressed model Ŝ (resp., Ŝ+
) lift

to S (resp., S+
) thanks to a meta-level theorem stating, intuitively,

that proofs or violations of properties in Ŝ correspond to proofs

or violations of properties in S. The meta-theorem (Theorem 1)

is described graphically in Figure 7. We point out that this corre-

spondence between the compressed and uncompressed system is

not a general result; it is restricted to S and the specific integrity

properties we consider for Uptane.

𝑆

	𝑆	# 	𝑆	#!

𝑆!Instrumentation

System under analysis
(compressed and instrumented)

Compression CompressionTheorem 
1(a)

Theorem 
1(b)

Instrumentation

Compressed system

Original system Instrumented system

Figure 7: Compression.

Description of Compression.We present more details about S
and Ŝ (the original and the compressed systems) and outline the

differences between the two. In both S and Ŝ, the system-level

input is comprised of four metadata files (one for each metadata file

type) and three software images (one for each ECU). The system-

level output is comprised of each ECU’s currently verified targets

metadata and currently installed image, as well as the director

repository’s latest verified VVM. Both the system-level input and

system-level output are event-based, intuitively meaning that input

and output values can be present or not. The absence of a system-

level input means that the corresponding image or metadata file is

not available for the primary ECU to download.

In S, a full metadata verification cycle spans nine (execution)
steps of the Uptane protocol, where a step corresponds to a tran-

sition of the model from a state s to a state s′. Eight steps are
each associated with the verification of a single input metadata file,

while the ninth step is used to cross-reference metadata from both

repositories. Concretely, at every step, the primary ECU is in one

of eight (execution) modes: (1) waiting for root director metadata,

(2) waiting for root timestamp metadata, . . . , (8) waiting for image

targets metadata, and (9) cross-referencing. At every step, the pri-

mary ECU attempts to verify the corresponding metadata file. If it

succeeds, the primary advances to the next mode on the next step.

If it fails, the cycle restarts. If there is no incoming metadata file to

verify, the ECU considers this a failure and restarts the cycle. If the

primary receives an input corresponding to a metadata file that is

not currently being verified, it ignores it. Also, images are ignored

until the last step of a successful verification cycle. In other words,

ECUs do not install new images in the middle of metadata verifica-

tion. Finally, the primary ECU does not produce output events in

the middle of the verification cycle (but only when it starts a fresh

verification cycle).

In Ŝ, the sequential verification steps above in the primary ECU

are collapsed to a single step where verification procedures are ap-

plied to all input metadata files in parallel. We call this compression

model compression, to highlight differences in the definition of the

system itself in the two models S and Ŝ. For example, the lower

half of Figure 6 demonstrates model compression with timestamp

metadata verification. In the uncompressed model, the ECU has to
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be in the correct mode in order to update its current timestamp

metadata. However, in the compressed version, no mode check is

required, and the ECU can update a metadata file if it is valid (and

all previous metadata files in the verification cycle were valid).

We also perform input compression, illustrated in Figure 6, which

amounts to considering only execution traces that have a system-

level input event at every step. Formally, this is achieved by adding

the temporal logic assumption (always Event) to the set of system-

level assumptions, where Event is a formula defined to be true in

the current state if and only if a system-level input event is present.

Both forms of compressions aim at reducing the length of traces

that MC has to reason about to find an attack trace, an execution

trace that violates one of the properties, or rule out their existence.

The following theorem (which we prove in a separate technical

document [47]) states, in essence, that applying compression on our

model S does not change the satisfiability of the desired properties

in either the benign case or with adversarial instrumentation. (In

the theorem, |= is the entailment relation in Linear Temporal Logic.)

Theorem 1. Let 𝐴 be a formula denoting assumptions on system-
level inputs for S. For each desired functional requirement 𝑅 from
Section 2:

(a) S ∧ always 𝐴 |= 𝑅 iff Ŝ ∧ always (𝐴 ∧ Event) |= 𝑅.
(b) S+ ∧ always 𝐴 ̸ |= 𝑅 iff Ŝ+ ∧ always (𝐴 ∧ Event) ̸|= 𝑅.

7 ANALYSIS FINDINGS
We now discuss the vulnerabilities uncovered by our protocol veri-

fication strategy and explain how they could be exploited. We use

the Kind 2 [13] model checker to model the non-cryptographic as-

pects of Uptane and the Tamarin [51] CPV to model the adversary’s

capabilities with respect to cryptographic assumptions. Appendix

D explains how to reproduce our analysis. Table 5 summarizes the

results with respect to property violations, and Table 6 lists the

attacks found using our workflow.

We consider extra attack scenarios A1 and A* which were not

present in previous work [37, 38, 48]. For each property, in threat

models where no attack was found, we distinguish between MC

proving that the property holds and timing out (with ✓ and “?”).

We demonstrate vulnerabilities of three types: (𝑖) showing that

previously-known attacks are possible with fewer adversary capa-

bilities; (𝑖𝑖) analyzing attacks that were not previously considered

(namely, replayed VVM, attacker-authored VVM, and incompati-

ble image attacks, to be discussed soon); and (𝑖𝑖𝑖) demonstrating

that the omission of optional features leads to a degradation in

security. Our analyses focus on attacks against partial verification

secondary ECUs. None of the attack scenarios require the adversary

compromising the Primary ECU.

We found several new vulnerabilities. For brevity, we only dis-

cuss two findings (Finding 1 and Finding OPT1) in the main text.

Details about the rest of the findings are in Appendix E. To further

clarify our analysis strategy, the first two findings discussed in

the appendix explicitly outline the workflow steps necessary to

discover the attacks.

Finding 1: Freeze Attack. The adversary causes a secondary ECU

to re-verify the same targets metadata file rather than updating to

the latest version.

Threat Model. Internal adversary (A2).

Vulnerability. An adversary (internal or external) can repeatedly

replay the same metadata files to the ECU. The ECU checks that

the metadata file version number (and for targets metadata, image

release counters) are nondecreasing, which will pass. Also, the ECU

will check if the metadata file’s expiration time is later than the cur-

rent time. The adversary can block an ECU’s access to the current

time by dropping the message containing the latest time, either be-

tween the external source of time and the primary ECU or between

the primary ECU and the secondary ECU. Alternatively, the adver-

sary can inject garbage time messages that will not pass the ECU’s

verification. The ECU’s response to the adversary’s tampering with

time messages is not well defined in the standard.

In Section 5.4.3.1 of the standard [28], there is no indication to

abort the update process if the attestation of the latest time is absent

or invalid. This contrasts with Sections 5.4.3.2-5.4.3.4 [28], which

recommend aborting if metadata or image verification fail. One

could interpret this to mean that the verification process should

continue without the ECU updating its clock, and so the most recent

securely attested time would be identical to the last update cycle.

This interpretation leads to the freeze attack succeeding.

For more information, one may consult the deployment recom-

mendations [27]. It states in Section 3.1.1.1 [27] that the primary

ECU should continue without updating its current time if it cannot

verify a time message, further supporting the previous paragraph.

But, Section 3.1.1.3 [27] says that all ECUs should abort, seem-

ingly contradicting Section 3.1.1.1 [27] as well as the standards

document— more clarification is needed to resolve the situation.

Detection. Based on Tamarin’s output, we insert a replay attacker on

the connection from the director to the primary and the connection

from the primary to the secondary. By assumption, the source of

time is secure, so the adversary’s only capability is to drop the

attestation of the latest time (there are no availability guarantees).

This can be modeled by allowing the adversary to replay the time

sent along the channel in the previous time step (both from the

time server to the primary and from the primary to the secondary).

MC gives a counterexample for the property “When the sec-

ondary ECU verifies new targets metadata, the new targets meta-

data is the latest available.” The adversary here drops the message

from the primary to the secondary ECU containing the latest time

and replays an older targets metadata file. The older targets meta-

data file is verified by the secondary, even though there is a newer

targets metadata file available.

7.1 Analysis of Optional Security Features
A distinct advantage of our approach over previous work is that

it makes it computationally feasible to reason about complex com-

binations of optional features. While some features of Uptane are

technically optional, their exclusion would lead to immediate and

obvious degradation in security. So, rather than disabling all op-
tional features, we pick a reasonable subset, that is, we consider a

few features whose absence may impact the integrity of the system:

(𝑂1) Repositories should increment version numbers of metadata

files when they are updated (a repository may update the meta-

data file but leave the version number unchanged); (𝑂2) targets
metadata should include image version numbers (image version

numbers are distinct from metadata version numbers); (𝑂3) the
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Property
P1 P2 P3 P4 P5 P6 P7 P8

Threat Model PW WC C PW WC C PW WC C PW WC C PW WC C PW WC C PW WC C PW WC C

B ? ✓ ✓ NA ✓ ✓ ? ? ✓ ? ✓ ✓ NA ✓ ✓ ? ✓ ✓ NA ? ✓ NA ? ✓

A1 NA × × NA × × NA ? ✓ NA ✓ ✓ NA ✓ ✓ NA ✓ ✓ NA ? ✓ NA ? ✓

A2 ? × × NA × × ? ? ? ? ✓ ✓ NA ✓ ✓ ? ✓ ✓ NA × × NA ? ?

A3 ? × × NA × × ? × × ? × × NA ✓ ✓ × × × NA × × NA × ×
A4 × × × NA × × ? × × ? × × NA ✓ ✓ × × × NA × × NA × ×
A5 × × × NA × × × × × × × × NA ✓ ✓ × × × NA × × NA × ×
A6 × × × NA × × × × × × × × NA ✓ ✓ × × × NA × × NA × ×
A* NA × × NA × × NA ? ✓ NA ✓ ✓ NA × × NA ✓ ✓ NA ? ✓ NA ? ?

✓ ↦→ Attack proven impossible with respect to model, × ↦→ Attack found

? ↦→ Attack presumed impossible, but no proof, NA ↦→ Not analyzed

PW ↦→ Prior work[41], WC ↦→ Our approach without compression, C ↦→ Our approach with compression

Green highlight ↦→ Needed compression for termination

Table 5: Partial Verification ECU Security Properties (no optional features omitted)

Attack Property
violated

Our threat
model

Prior threat
model

Optional fea-
tures omitted

Contribution

Freeze P1 ≥ A1 ≥ A4 ⇊

VVM Replay I P2 ≥ A1 NA ⋆

VVM Replay II P2 ≥ A2 NA ⋆

Rollback I P3 ≥ A3 ≥ A5 ⇊

Rollback II P3 ≥ A2 NA 𝑂1,𝑂2 ⋆

Arbitrary software P4 ≥ A3 ≥ A5 ⇊

Attacker-authored VVM I P5 ≥ A1 NA 𝑂3 ∇
Attacker-authored VVM II P5 A* NA ∇
Mix-and-match P6 ≥ A3 ≥ A3 ≡
Mixed-bundles P7 ≥ A2 NA ∇
Incompatible image P8 ≥ A3 NA ∇

NA ↦→ Not analyzed or not specified, Gray ↦→ no optional features omitted

⋆ ↦→ New attack,⇊ ↦→Weaker threat model, ≡↦→ Equivalent to prior analysis

∇ ↦→Mentioned in a previous document, e.g. [27], but there was no analysis of adversarial capabilities necessary for the attack

Table 6: Attacks

director repository should verify digital signatures when checking

VVMs for legitimacy; and (𝑂4) the director repository should use

information about image dependencies and conflicts when select-

ing images for vehicles to install. Without using blame assignment,

comprehensively analyzing Uptane’s security properties with re-

spect to this set of optional features would require us to execute
the entire workflow 2

4 = 16 times — the blame assignment feature

narrows this to just once, greatly reducing manual efforts.

FindingOPT1: RollbackAttack.Disabling just𝑂1 and𝑂2, allows

an adversary of weaker capability (A1, compared to A3) to execute

a specific kind of rollback attack.

Threat Model. External adversary (A1).

Vulnerability. To verify new targets metadata, the ECU checks the

signatures, version number, expiration time, and ECU IDs.

If an adversary replays an older targets metadata file, but the

older targets metadata file does not have a lower version number

(due to𝑂1), then the version number checkwill pass. Themetadata’s

signatures and ECU identifiers will still be valid. For the expiration

time check, messages containing the latest time can be dropped,

or garbage time messages can be injected, as discussed for freeze

attacks. This could be performed in the background by the adversary

(keeping the ECU’s clock at the same value for multiple update

cycles) until they spot a vulnerability in one of the ECU’s images

and are ready to execute the rollback. During image verification,

the ECU checks for rollbacks by comparing release counters in

current and previous targets metadata files. However, this check

is not performed if these version numbers are absent (due to the

second omission), so the rollback succeeds. An automaker may omit

these features if they view two images as essentially equivalent and

want to allow an ECU to freely switch between them. This is not

intuitively a “rollback,” but the attack demonstrates how important

it is to reason about combinations of protocol features.

Detection. Based on output fromTamarin, we insert a replay attacker

on the connection from the director repository to the primary and

from the primary to the secondary. MC finds a counterexample

where the adversary replays a previous targets metadata file with

the same version number as the current targets metadata file. (The

older targets metadata file contains information about an older

image.) The metadata file passes verification. When the primary

ECU requests the corresponding image from the image repository,
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the adversary replays the older image. Image verification passes

because the ECU cannot detect that the image is older (because the

image’s version number is absent from the targets metadata), and

the image matches the ECU’s current metadata.

8 RELATEDWORK
There are a few formal analyses of Uptane in the literature, including

one [9] which was discussed in depth in Section 3.

Additionally, there is an approach based on Communicating Se-

quential Processes [37, 38] and an approach based on attack-defense

trees [48]. However, these studies have the following limitations: (𝑖)

they [37, 38, 48] don’t consider attacks outside of those addressed

in [41]; (𝑖𝑖) they [37, 38, 48] don’t consider adversaries operating

within the vehicle; (𝑖𝑖𝑖) they [37, 38] don’t consider a system with

multiple secondary ECUs; (𝑖𝑣) they [37, 38, 48] don’t consider the

omission of optional protocol features; (𝑣) they [48] only consider a

threat model where the adversary is very powerful (always assum-

ing all repository keys are compromised); and (𝑣𝑖) their [37, 38, 48]

models did not lead to the discovery of new vulnerabilities. We

overcome these limitations and construct a rich model that ac-

counts for multiple different adversarial scenarios and produces

counterexamples representing new vulnerabilities.

Previous works with the most similar methods are LTEInspector

[32] and 5GReasoner [33], which combine model checkers with

CPVs to analyze 4G and 5G cellular protocols. Our approach builds

on these methods in several ways, as discussed in Section 5.

There is also previous work related to OTA updates in general—

Uptane is built on top of a general framework called The Update

Framework, which is discussed and analyzed in [11, 12, 42, 43, 59].

In addition, many works analyze OTA updates in the context of IoT

systems [5, 22, 31, 53], which have similar limitations as automotive

systems (e.g., devices having limited computing power). Finally,

some works analyze OTA updates in vehicles [3, 15, 34, 36, 56, 57],

but consider approaches separate from the Uptane protocol.

9 DISCUSSION
Responsible Disclosure. We reported our findings to the Uptane

standards body, and the legitimacy of our results has been posi-

tively acknowledged. To address the issues discussed in this paper,

we are collaborating with the Uptane standards body, including

working on updates to the core specification documents [27, 28].

For example, since reporting our findings, both VVM replay attacks

(see Appendix E) have been addressed in the newest version of

Uptane (version 2.1), and there is an active GitHub issue addressing

the freeze attack. Further updates are currently in progress.

Performance. Our Uptane system model consists of around 2K

lines of specs and eight functional properties. To prove properties

and to find counterexamples for disproven properties in Table 5,

MC took 7 minutes and 49 seconds and 2 minutes and 33 seconds

on average, respectively. Out of 20 instances where no attack was

found, MCwas able to prove the absence of an attack in 14 instances.

In the other 6 instances, MC timed out. (Performance metrics were

gathered using an Apple M2 CPU and 16 GB RAM.)

Feasibility of Threat Models. Threat models A3 through A* rely

on various key compromises, which are strong assumptions. How-

ever, the Uptane standard and deployment recommendations state

that director repository keys ought to be kept online to automate

creation of fresh metadata. In contrast, image repository keys ought

to be kept offline, as the corresponding metadata is updated less

frequently. Note that all of our attacks only require compromising

online director keys, which are much more vulnerable.

Generalizability of Insights.While Insight 1 (compression) is

Uptane-specific, all five other insights (comprising the automated

verification workflow, including eager combination with replay

attackers and blame assignment) are protocol-agnostic.
Testbed. To the best of our knowledge, there are no complete and
freely available implementations of Uptane at the time of writing

this paper. For example, the reference implementation [44] is no

longer mentioned on Uptane website, as it is based on an obsolete

version of the standard. Also, the implementation in AGL omits core

aspects of the standard, including parts of metadata verification.

While experimentation in a testbed would be ideal, we argue that

specification-level issues and ambiguities can lead to vulnerable

implementations and should be resolved at the specification level.

Threat to Validity. We put forth a good-faith attempt to model

the standard to the best of our ability. Implementations that inter-

pret the standard differently, deviate from the standard, or provide

additional security measures not prescribed by the standard may

suffer from a different set of vulnerabilities.

10 CONCLUSION
We present a novel workflow for the formal analysis of security

protocols and apply it to Uptane, a state-of-the-art OTA update

protocol. Our strategy leverages the strengths of model checkers

and CPVs, and its application to Uptane reveals five known and six

new security vulnerabilities. Since previous manual efforts failed to

document these vulnerabilities, we argue that automated reasoning

is a uniquely comprehensive and rigorous tool for protocol analysis.
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A ABBREVIATIONS
Table 7 contains the abbreviations we use throughout the paper

and their meanings.

B UPTANE BACKGROUND
B.1 Uptane Metadata
Uptane uses four types of metadata: root, timestamp, snapshot, and
targets metadata, each requiring a threshold of digital signatures.

Root metadata specifies the public keys associated with each meta-

data type (root of trust). Targets metadata includes information

about images to be installed (image filenames, hashes, etc.). Snap-

shot metadata contains a filename and version number for each

Abbreviation Meaning
MC model checker

CPV cryptographic protocol verifier

S Uptane model

Ŝ compressed Uptane model

S+
adversarially instrumented Uptane model

Ŝ+
adversarially instrumented, compressed Uptane

model

Properties
P1 checks for freeze

P2 checks for VVM replay

P3 checks for rollback

P4 checks for arbitrary software

P5 checks for attacker-authored VVM

P6 checks for mix-and-match

P7 checks for mixed-bundles

P8 checks for incompatible image

Threat models
B benign

A1 outside vehicle MitM

A2 outside + inside vehicle MitM

A3 Full MitM + director keys

A4 A3 + timestamp & snapshot image repo keys

A5 A4 + targets image repo keys

A6 A5 + root image repo keys

A* A1 + primary ECU key

A# supply chain attack

Table 7: Abbreviations and their Meanings

targets metadata file currently on the repository (to guarantee con-

sistency). Timestamp metadata includes the filename and version

number of the latest snapshot metadata file, as well as its hash (to

guarantee freshness). Every metadata file has a version number and

expiration timestamp. At construction time, the vehicle is manually

initialized with a set of valid metadata.

Update discovery: In the update discovery phase, new images are

selected for the ECUs to install. This selection is performed by

the director repository, which retrieves information about the ve-

hicle’s currently installed information and performs dependency

resolution to select new updates.

1) The primary ECU queries the director repository for new

updates. This query includes information about the vehicle’s

currently installed images in a file called the vehicle version
manifest (VVM), signed with the primary ECU’s secret key.

2) The director repository verifies the VVM by checking digital

signatures, ECU IDs, and nonces.

3) The director repository generates a fresh set of metadata on

the new updates to be installed and sends it to the primary

ECU.

B.2 Protocol Steps
Metadata verification: In the metadata verification stage, ECUs

process metadata from both remote repositories, applying veri-

fication procedures to ensure that the metadata is not tampered

with.
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4) The primary ECU verifies each metadata file from the di-

rector repository. If verification succeeds, the primary ECU

overwrites its current set of metadata. We will not discuss

the specifics of metadata verification; for more information

see [28, 41].

5) The primary ECU queries the image repository for fresh

metadata and performs a similar verification.

6) The primary ECU cross-references the targets metadata from

the two repositories to check for discrepancies.

7) If the verification succeeds, the primary ECU sends the new

metadata to all secondary ECUs, which then perform their

own metadata verification.

Image verification and acquisition: In the image verification and
acquisition stage, ECUs apply a verification procedure to the new

images retrieved from the image repository. If this verification is

successful, then the ECU installs the new image.

8) The primary ECU downloads new images from the image

repository which correspond to those listed in its latest set

of metadata.

9) The primary ECU verifies the images by comparing the im-

ages’ hashes to those specified in the targets metadata.

10) If verification succeeds, the primary installs its new image

and forwards the other new images to the secondary ECUs,

which also perform verification and installation.

11) Each secondary ECU reports back to the primary whether

or not the updates were successfully installed in an ECU
version report. Each report is signed with the corresponding

secondary ECU’s secret key and is included in the VVM at

the beginning of the next update cycle (update discovery).

If any of the steps above fails, the offending file (metadata, image,

or VVM) is discarded and the cycle is restarted.

B.3 Alice-Bob Description of Uptane
We give a high-level description of the operations performed and

the messages sent in a successful Uptane update cycle using Alice-

Bob notation (see Figure 8). The protocol steps are numerically

labeled to illustrate which step of the three stages (outlined previ-

ously) they correspond to. We include four principles, 𝑃 (primary

ECU), 𝑆 (secondary ECU), 𝐷 (director repository), and 𝐼 (image

repository). We denote keys in the form skeydr , where (for exam-

ple) skey denotes a secret key, 𝑑 denotes the Director principal,

and 𝑟 denotes the root role. Local operations/checks are encoded

by the check keyword. The Alice-Bob notation assumes a “happy

path” where all checks succeed. For simplicity of presentation, we

assume that the threshold number of signatures required for each

metadata file is one and that there is a single secondary ECU. Fur-

ther, we leave some of the details implicit: (𝑖) that all signatures
are verified according to the latest root metadata, and (𝑖𝑖) that each
ECU checks that each incoming metadata file has a nondecreasing

version number and is not expired.

C PROPERTY FORMULATION
P1. always (

Event^c => targets_meta_secondary

= director_latest_targets

)

Attack Type Our
Approach

Approach
from[9]

Number of threat

models

9 5

Number of security

properties

8 7

Meta-level analysis of

optional protocol

features with blame

assignment?

Yes No

Compression? Yes No

Eager combinationwith

replay attacker?

Yes No

Table 8: Comparison of approach with [9].

P2. always (

Event^c => director_latest_manifest

= primary_latest_manifest

)

P3. always (

Event^c => image_secondary_version

>= old_image_secondary_version

)

P4. always (

Event^c => AuthoredByOem(image_secondary)

)

P5. always (

Event^c =>

AuthoredByEcu(director_latest_manifest)

)

P6. always (

Event^c => Compatible(targets.image_one ,

targets.image_two ,

targets.image_three)

)

P7. always (

Event^c =>

(Historically(pri_soft_version

= sec_soft_version) =>

Compatible(pri_image , sec_image , sec2_image)

)

)

P8. always (

Event^c =>

CompatibleHardware(image_sec , hardware_sec)

)

D IMPLEMENTATION
In this section, we describe the details of our approach.

D.1 Modeling Adversarial Influence
To model adversarial influence, we place an adversarial component

𝐴 between each pair of components (𝑀, 𝑁 ) in S. When 𝑀 sends

a message to 𝑁 (or vice versa), 𝐴 takes in 𝑀’s output and nonde-

terministically modifies it before passing it along to 𝑁 , acting as a

man in the middle.
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Figure 8: Uptane Alice-Bob Description

The adversary’s behavior is defined as an abstract description of

its output values in terms of its input values, called a contract. This
allows for nondeterminism, where the adversary is free to pick any

possible modification that respects the contract.

Standard Attacker. No restrictions are imposed on the output

value of the component, so the adversary can select an arbitrary

message to inject.

Bounded Replay Attacker. The bounded replay attacker can only

inject messages that were sent along the network connection in

the last 𝑘 timesteps (for some constant 𝑘). The adversary’s contract

involves storing each message sent from𝑀 to 𝑁 in a wraparound

queue of size 𝑘 . This wraparound queue can be seen as a sliding

window where the attacker only holds the last 𝑘 messages in its

memory. Then, the attacker must pick an element from this window

when injecting messages along the network channel. This disallows

the adversary from arbitrarily modifying the data sent from 𝐴 to 𝐵,

as the adversary can now only replay one of the last 𝑘 messages.

Unbounded Replay Attacker.We also model a replay attacker

with unbounded memory, i.e., the ability to replay messages that

were sent arbitrarily far in the past. Instead of storing previous

messages in a queue, the unbounded replay attacker stores the

values of previous messages as outputs of a partial function 𝑓 :

N ⇀ 𝐵, where 𝐵 is the type of the message being sent along the

channel. At each timestep 𝑖 , the adversary extends the definition

of 𝑓 such that 𝑖 ↦→ msg𝑖 , where msg𝑖 is the current message being

sent along the channel. Then, at timestep 𝑖 , the adversary is free to

nondeterministically select any message𝑚 ∈ {𝑓 ( 𝑗) | 0 ≤ 𝑗 ≤ 𝑖}.

D.2 MC Model
Uptane System Architecture. We begin by outlining Uptane’s

system architecture which is graphically illustrated in Figure 2.

We define the top level component and each of its subcomponents

and then specify each component’s interface and connections. For

example, here is the SecondaryECU component’s interface:

component SecondaryECU

(in_primary: PrimaryToSecondary)

returns
(out_primary: SecondaryToPrimary ,

installed_image_secondary: Image ,

verified_metadata_secondary:Metadata)

The SecondaryECU component has one input where it receives data

from the primary ECU and three outputs where it (𝑖) sends data
to the primary ECU, (𝑖𝑖) reports its currently installed image, and

(𝑖𝑖𝑖) reports its current set of verified metadata. The in_primary and

out_primary variables contain the data being sent from the primary

to the secondary, and vice versa (e.g. metadata, ECU version re-

ports). The installed_image_secondary and verified_metadata_secondary

variables are also records, the former containing information about

an image and the latter containing four metadata files.

Component-Level Design. Next, we specify the behavior of each

component of the architecture with assume-guarantee contracts.

Consider the following functional specifications for the SecondaryECU:

(1) The ECU’s version report has correct information with respect to

the currently installed image (filename and hashes); and (2) the ECU

updates metadata according to the Uptane standards document.

We formalize these specifications using abstract syntax for con-

ciseness. First, for (1), we add the following guarantee stating that

the filename and hash listed in the output ECU version report

equal the installed image’s filename and hash (image abbreviates

installed_image_secondary):

image.filename = out_primary.report.filename and
hash(image) = out_primary.report.hash

To formalize aspect (2), we add the following guarantee where

image abbreviates installed_image_secondary:

if new_image_verified

then image ' = new_image

else image ' = image
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where image’ denotes the value of variable image in the next state,

and new_image_verified is a predicate defined according to the im-

age verification instructions in the Uptane standards document.

The guarantee states that if the new image passes verification, the

ECU updates to the new image; otherwise, it keeps the previously-

installed image. In the above example, the initial state predicate

enforces that image is equal to initial_image initially.

Any system execution that satisfies these constraints will be

considered valid during the analysis performed by MC. We follow

a similar process to specify the other components.

Desired Functional Requirements. Recall the list of desired

functional requirements from Section 3. We can express, for

example, property P3 (checks for rollback attacks) with the

following top-level guarantee, where the primed version of

installed_image_secondary refers to the value of the variable in the

next state:

installed_image_secondary '. version >=

installed_image_secondary.version

Simplifying Assumptions. To make the analysis feasible, we

make further simplifying assumptions: (𝑖) We assume there are

no delegations
1
in targets metadata; (𝑖𝑖) we model a vehicle with

exactly one primary and two secondary ECUs; and (𝑖𝑖𝑖) we omit

parts of the standard that relate to implementation details, e.g., how
filenames are encoded.

D.3 CPV Model
To accurately model the adversary’s capabilities with respect to

cryptographic assumptions, we consult Tamarin [51], a crypto-

graphic protocol verifier. We formulate a Tamarin model by includ-

ing rules capturing the cryptographic aspects of each message sent

in the Uptane protocol. As an example, the following rule models

the primary ECU sending targets metadata to the secondary ECU:

rule primary_send_metadata:

[! PriLatestTargetsDir(targets , <sig1 , sig2 >)]

-->

[Out(< targets , sig1 , sig2 >)]

The primary ECU retrieves the most recently verified targets

metadata (and its signatures) and sends it along the insecure net-

work channel. The secondary ECU verifies metadata with the fol-

lowing rule:

rule secondary_verify_metadata:

[ In(<targets , sig1 , sig2 >),

SecMetaDir(<pubkey1 , pubkey2 >, old_targets) ]

--[ Eq(verify(sig1 , targets , pubkey1), true),

Eq(verify(sig2 , targets , pubkey2), true), ]->

[SecMetaDir(<pubkey1 , pubkey2 >, targets )]

The secondary ECU receives the incoming metadata from the

insecure channel and performs verification by checking the digital

signatures. The Tamarin model only captures the cryptographic
aspects of the protocol while abstracting away other aspects (e.g.,
checking version numbers).

In the Tamarin model, we formulate 10 correspondence (weak

authentication) and 10 injective-correspondence (strong authen-

tication) lemmas to learn about the cryptographic aspects of the

1
Delegations refer to when signing ability is deferred to another party. See the Uptane

standard [28] for more details. To the best of our knowledge, support for delegations

is not yet present in open source implementations.

protocol. The correspondence lemmas are of the form:

∀𝑚𝑠𝑔.∀𝑖 . Receive(𝑚𝑠𝑔)@𝑖 ⇒ (∃ 𝑗 . Send(𝑚𝑠𝑔)@ 𝑗 ∧ (𝑖 < 𝑗) .

In other words, if a message (e.g., metadata) was received (i.e., veri-
fied) at time 𝑖 , then it must have been sent at an earlier time 𝑗 . If

this lemma is proven for some network connection, then it is cryp-

tographically infeasible for the adversary to inject new messages.

The injective-correspondence lemmas are of the form:

∀𝑚.∀𝑖 . Receive(𝑚)@𝑖 ⇒ (∃ 𝑗 . Send(𝑚)@ 𝑗 ∧ ( 𝑗 < 𝑖)
∧ ¬(∃𝑖2. Receive(𝑚)@𝑖2 ∧ ¬(𝑖2 = 𝑖))) .

This lemma states that if a message was received at time 𝑖 , then

it must have a unique matching sender at an earlier time 𝑗 . If this

lemma is proven, then the adversary cannot inject or replay mes-

sages; failure suggests that replays are possible. The two previous

lemmas are formulated for each step ofmetadata verification, aswell

as for VVM and image verification. In addition to the authentication

lemmas, it is necessary to prove sanity-check lemmas of the form

∃𝑚𝑠𝑔.∃𝑖 . Receive(𝑚𝑠𝑔)@𝑖 . that demonstrate that the premises of

the implications are reachable. These lemmas are called a “sanity-

check” lemma because if it is disproven by Tamarin, then there is

likely a mistake in the model. We proved sanity-check lemmas for

every protocol message.

Termination. Tamarin often has to find long traces to (dis)prove

lemmas, resulting in termination issues. We thus implemented our

own heuristic (called an oracle) to guide Tamarin in its proof search.

This heuristic orders Tamarin’s proof goals, instructing Tamarin

on which unsolved premises to solve first. Our heuristic is Uptane-

specific and sets proof goals in the logical order that metadata

verification occurs in.

Another essential step in achieving termination is to impose

bounds on the number of times each Tamarin rule can be applied

(in a trace). In some cases, for tractability, we only allow each

Tamarin rule to apply only once or twice in a trace. Although this is

limiting, Tamarin was still able to disprove several lemmas, leading

to the attacks we found.

E FINDINGS
E.1 Working Example, Finding 2 and Finding 3

(VVM Replays)
To further illustrate the workflow, wewill walk through the analysis

of desired functional requirement P2. In English, the property we

want to check is “The director repository never verifies old VVMs.”

In the attack, the adversary intercepts and replays an old VVM,

tampering with the director repository’s task of generating new

metadata (potentially causing it to direct the vehicle to install the

wrong images).

Execute CPV. First, we execute the relevant lemmas in the Tamarin

model— those corresponding to (𝑖) sending the VVM from the pri-

mary ECU to the director, and (𝑖𝑖) sending an ECU version report

from the secondary to the primary. In both cases, the weak au-

thentication lemma is proven, meaning that injection of new VVM-

s/version reports is cryptographically infeasible. Also, in both cases,

the strong authentication lemma fails, producing counterexample

traces where the adversary replays the same VVM/ECU version

report twice, and yet they are still verified by the director.
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Specify MC threat model. The results from the CPV model (weak

authentication lemma proven, strong authentication lemma dis-

proven) mean that a replay attacker should be placed on the connec-

tions from the primary ECU to the director and from the secondary

ECU to the primary ECU. All other connections are labeled as in-

vulnerable to attack.

Execute MC. MC produces a counterexample where an adversary

intercepts a VVM and replays it at a later timestep, a straightforward

replay that represents a violation of P6.

When the director receives the VVM, it checks that the VVM is

valid by verifying the digital signatures, comparing the ECU IDs to

its internal database, and checking if the nonces are fresh (based

on if they have been seen before). However, the nonce check is not

effective against an adversary who intercepts a VVM and replays it

at a later time. The check still succeeds, as this is still the first time

the director has seen the nonce (assuming the adversary does not

replay the same VVM multiple times). Since the replayed VVM still

contains valid signatures and ECU IDs, the replay succeeds.

Attack chaining.We perform a technique called attack chaining
where we update the model to block the previous attack trace and

see if the tool can find a different (and potentially more interesting)

attack. We update the model by (𝑖) updating the system-level prop-

erty to “The director never verifies an old ECU version report,” a

more fine-grained property, and by (𝑖𝑖) modeling the connection

from the primary ECU to the director as invulnerable to attack.

These changes guarantee a trace that is different than the previous

attack. With these updates to the model, MC produces a counterex-

ample trace representing a unique attack. In this version, the adver-

sary dropped an ECU version report being sent from a secondary

to the primary ECU and injected it at a later cycle. In this version of

the attack, the adversary created a VVM from ECU version reports

that weren’t initially supposed to be in the same VVM.

When the primary builds the VVM at the beginning of each

update cycle, it queries all its secondaries for their latest ECU ver-

sion reports. However, the primary does not do any verification (all

verification is performed by the director). The director is thus still

vulnerable to replay attacks. Instead of replaying at the manifest

level, the adversary can intercept and replay individual version

reports within the vehicle. When the ECU version reports are re-

played, the primary still signs the manifest, so all the signatures

are still valid.

E.2 Other Findings
Finding 4: Arbitrary Software Installation Attack. The ad-

versary causes a secondary ECU to install an adversary-authored

software image.

Threat Model. Internal adversary with compromised director targets

metadata keys (A3).

Vulnerability.When the secondary ECU performs partial verifica-

tion on metadata, there is no cross-referencing of metadata from the

image repository. The compromise of only director targets metadata

keys (no image repository keys) leaves the secondary ECU vulnera-

ble to any attack. If the adversary performed a man-in-the-middle

attack solely outside the vehicle, the primary would detect the at-

tack (when cross-referencing metadata from both repositories) and

would refrain from forwarding the offending targets metadata file

to any secondary ECU. But, an internal adversary can directly inject

a malicious metadata file, bypassing the primary ECU’s verification.

Detection. Based on Tamarin’s output, we insert a standard attacker

on the connection from the primary to the secondary. With the

standard attacker, MC finds a counterexample to the property “The

secondary ECU never verifies an attacker-authored image.” In the

counterexample, the adversary first forges and injects a targets

metadata file to the secondary ECU that contains the hash of an

attacker-authored image. The forged metadata file is verified by

the ECU because the digital signatures are valid and the adversary

has complete control over the metadata file’s contents. Then, the

attacker injects the corresponding attacker-authored image, which

passes the secondary’s verification because its hash matches the

hash found in the secondary’s (forged) targets metadata.

Finding 5: Incompatible Image Installation Attack. The adver-
sary causes an ECU to install an image that is incompatible with

the ECU’s hardware. This is different from the incompatibilities

discussed in previous attacks, which were in the form of images

being incompatible with each other, not with the ECU’s hardware.

Threat Model. Internal adversary with compromised director targets

metadata keys (A3).

Vulnerability. Same as the arbitrary software attack.

Detection. Similar to arbitrary software attack.

Finding 6: Mix-and-Match, Rollback Attacks. We also ana-

lyzed mix-and-match attacks and rollback attacks. These attacks

are possible in attack scenario A3 due to the same vulnerability that

allows arbitrary software attacks. But, they have a lower impact

than arbitrary software, so they will not be discussed in depth.

Finding OPT2: Attacker-authored VVM. Disabling O3 allows
an attack in threat model A1 where the adversary injects a VVM

that is verified by the director because the digital signature is not

checked. Including O3, this attack also succeeds in threat model A*.

Finding OPT3: Supply chain attacks. We model supply chain

attacks by placing a standard attacker on the system-level inputs

(see Figure 2 attacker A#) and annotating every other connection as

invulnerable to attack. With the supply chain attacker, all desired

functional requirements are violated except for P2 (checks for VVM

replays), which is maintained because there is no adversary between

the primary ECU and director repository to replay VVMs. Supply

chain attacks are out of scope for Uptane, but this analysis serves

as a sanity check and speaks to the importance of supply chain

security.
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