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ABSTRACT
In modern software development, APIs play a crucial role as they
facilitate platform interoperability and serve as conduits for data
transmission. API fuzzing has emerged to explore errors and vul-
nerabilities in web applications, cloud services, and IoT systems.
Its effectiveness highly depends on parameter structure analysis
and fuzzing request generation. However, existing methods focus
more on RESTful APIs, lacking generalizability for other protocols.
Additionally, shortcomings in the effectiveness of test payloads and
testing efficiency have limited the large-scale application of these
methods in real-world scenarios.

This paper introduces APIF, a novel API fuzzing framework that
incorporates three innovative designs. Firstly, by adopting a tree-
structured model for parsing and mutating parameters in different
API protocols, APIF breaks the limitations of existing research that
are only effective for RESTful APIs, thus broadening its applicability.
Secondly, APIF utilizes a recursive decoder to tackle the complex
encodings in API parameters, increasing the fuzzing effectiveness.
Thirdly, APIF leverages a testing priority calculation algorithm
together with a parameter independence analysis algorithm to en-
hance fuzzing efficiency, enabling this method to be widely applied
in real-world, large-scale API vulnerability fuzzing.

We evaluate APIF against the state-of-the-art fuzzers on 7 open-
source projects via 412 APIs. The results demonstrate APIF’s supe-
rior precision, recall, and efficiency. Moreover, in real-world API
vulnerability exploration, APIF discovered 188 bugs over 60 API
projects, with 26 vulnerabilities confirmed by the software main-
tainers.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Software and its engineering→ Software defect analysis.
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1 INTRODUCTION
With the widespread application of API infrastructure, attacks ex-
ploiting vulnerabilities in APIs, such as those listed in the OWASP
API Security Top 10 [9], may result in service crashes, unautho-
rized access, and sensitive data exposure. Consequently, testing for
security vulnerabilities in APIs has become a critical component in
enterprise API service development.

Typically, the generation strategies of an API fuzzer handle two
main problems: 1) how to generate/insert fuzz vector and 2) how
to generate proper test sequences. Early works [19, 20, 22, 29, 34,
45, 48] obtaining information from API declaration files, and using
predefined fuzzing libraries [19], random values [22, 29], constraint-
based methods [34, 45], and historical data [20] to generate test
vector and sequence, aim to discover test vectors that cause ex-
ceptions in APIs. However, in these methods, less attention is paid
to the contextual relationships of API parameters, resulting in the
generated test vectors having low validity. To better adapt to the
needs of API fuzzing, some new approaches have been proposed to
improve the process of generating test vectors and test sequences.
These include using test coverage [44, 46], dependency constraint
solving [28, 37, 43], data-driven metrics [21, 27, 38, 42], graph-based
analysis [39], and context-aware learning based on historical API
communication data [39, 40]. In the industry, API vulnerability
fuzzing tools [4, 8] have adopted the pattern of web vulnerability
fuzzing, relying on single-packet testing, and traversing all param-
eters.

Regarding the existing research, we have identified three main
shortcomings in the approach to black-boxAPI vulnerability fuzzing:

• Generalizability: Previous studies have predominantly fo-
cused on RESTful APIs, demonstrating a lack of generaliz-
ability in their methods. As the API infrastructure evolves,
the security issues of various new types of APIs cannot be
overlooked, such as SOAP and GraphQL APIs in web ap-
plications, MQTT APIs in IoT systems, and gRPC APIs in
cloud-native applications. We aim to employ a universal API
vulnerability fuzzing framework that can adapt to multiple
API styles.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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• Effectiveness: Previous studies paid little attention to the
complexity of API parameter structures and encodings. In
real-world web services, many API parameters are encapsu-
lated and encoded in multiple layers. For example, a base64
encoded parameter value that, once decoded, uncovers an
XML structure. By blindly altering API parameters, testing
without decoding often leads to format errors in API re-
sponses, thereby obstructing the discovery of vulnerabilities.
• Efficiency: Previous research has inadequately addressed
the practical application scenario wherein enterprise secu-
rity teams frequently conduct large-scale scans of hundreds
to thousands of APIs. Theoretically, in payload-based secu-
rity testing, the number of requests sent equals the total
number of parameters in the APIs being tested multiplied by
the number of payloads in the payload list. This typically rep-
resents hundreds of millions of test requests and a significant
amount of time consumption. Unoptimized fuzz testing tools
may generate an enormous volume of requests, leading to the
following issues: 1) Extremely low testing efficiency, making
it challenging to discover vulnerabilities within the limited
testing timeframe. For example, in pre-release security test-
ing scenarios, security teams often have very limited time
to conduct security assessments. 2) Even in isolated testing
environments, the substantial computational and network
I/O load generated by a large number of requests typically
translates to higher testing costs. Moreover, in real-world
API security testing, effective authentication measures are
usually required to test a broader range of APIs. For instance,
valid cookies and sessions must be configured to test APIs
that are accessible only after user login. However, session
lifetimes are typically limited, necessitating that the testing
tools identify vulnerabilities as quickly as possible within
the valid session period.

To overcome the above challenges, this paper introduces APIF, a
novel black-box API vulnerability fuzzing framework. Our research
aims to design and implement the most practical API vulnerability
fuzzer. It will have broad applicability across various types of APIs,
feature a simple underlying principle, and have high efficiency, to
fit the needs of conducting vulnerability testing on large-scale APIs
in the real world.

Our innovation is in three primary phases: First, API commu-
nication patterns are obtained from real API traffic, and then API
encoding and parameter structures are parsed and systematically
stored as a unified tree structure through recursive decoding. This
innovative representation enables an in-depth understanding of
complex API parameters, ensuring that test vectors can be injected
under the API’s encoding format, enhancing the test effectiveness.
Furthermore, using a unified tree structure to represent and mutate
the content of API parameters is applicable to all mainstream API
types, not limited to RESTful APIs, thereby enhancing the gener-
alizability of this framework. Second, for each API in the testing
list, we calculate the likelihood of vulnerabilities using featured
indicators such as the number of parameters, complexity of pa-
rameter types, and variety of request methods. APIs with higher
vulnerability probabilities are prioritized for testing to improve
overall fuzzing efficiency. This approach is particularly beneficial

in scenarios where session lifetimes are limited, as it helps selecting
testing paths with higher effectiveness within a given timeframe.
Third, an independent analysis algorithm allows the mutations of
multiple API parameters to be tested in a single request, thereby
reducing network requests and enhancing fuzzing efficiency.

The effectiveness of APIF is demonstrated through the empirical
evaluation of 7 projects via 412 APIs. APIF outperforms leading
black-box API fuzzing tools in precision, recall, and efficiency. Ad-
ditionally, APIF’s application to 60 real-world projects led to the
discovery of 188 bugs, including 26 vulnerabilities.

In summary, we make the following main contributions.
• We propose a new tree-structured API vulnerability fuzzing
framework, featuring several innovative optimizations in-
cluding 1) using a unified tree structure to represent and
mutate API parameters to increase the framework’s gen-
eralizability across different types of APIs, 2) employing a
recursive decoder to address the complexity of API parame-
ters and enhance test effectiveness, and 3) utilizing a testing
priority calculation algorithm along with a parameter inde-
pendence analysis algorithm to improve testing efficiency.
• We compare the performance of APIF against other vulnera-
bility scanners and API testing tools on seven projects and
demonstrate APIF’s superior precision, recall, and efficiency.
• We have made APIF’s tool implementation publicly available
[1]. It discovered 188 bugs over 60 real-world API projects
and identified 26 vulnerabilities with 6 assigned CVE IDs and
12 assigned CNVD IDs. We responsibly disclose those vul-
nerabilities to the maintainers and all of the vulnerabilities
are confirmed.

The rest of this article is organized as follows. Section 2 intro-
duces the background. Sections 3 and 4 constitute the core of this
work, introducing our framework and the optimizations. Section
5 presents the experimental evaluation. Section 6 discusses lim-
itations. Section 7 positions our approach against related work.
Section 8 introduces future work and concludes this article.

2 BACKGROUND AND PRELIMINARIES
2.1 APIs in Morden Services
2.1.1 Web Service API. Traditional web applications often employ
GET/POST methods to retrieve user-input data, where 1) GET re-
quests are used for loadingweb pages or fetching resources; 2) POST
methods submit form data, like user login credentials or payment
information. On the more advanced spectrum, WebSocket APIs pro-
vide real-time, bidirectional communication between clients and
servers, ideal for chat applications or live updates. Furthermore,
GraphQL APIs offer a more efficient and flexible way to query and
manipulate data, allowing clients to specify exactly what data they
need. By exploring these different APIs, developers can identify
and address a broader range of vulnerabilities, such as injection
attacks, session hijacking, or data over-fetching/under-fetching in
web applications.

2.1.2 Cloud Service API. Access to most cloud services is typi-
cally provided through RESTFul APIs, which facilitate a variety of
functions. In practice, different request types can prompt varied
responses from a cloud service. For example, in a cloud computing
platform, a client can 1) use the GET method to retrieve a list of
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/console /{id}:
get:
parameters:
-name: id
Required: yes
type: string

-name: cmd
Required: yes
type: string

(a) API Specification

Generated_Request =
Request(
Static ("GET /console /")
+ Consumer ("{id}")
+ Static ("?cmd=")
+ Fuzzable (" string ")
+ Static ("HTTP /1.1")
+ ...

)

(b) Request template

GET /console/admin?cmd=
cat %20/ etc/passwd
HTTP /1.1

Host: www.test.com
...
...
...
...
...

(c) Testing request

200 OK
Server: nginx
...
root:x:0:0: root:/root:/

bin/bash
daemon:x:1:1: daemon :/usr/

sbin:/usr/sbin/
nologin

...

(d) Response

Figure 1: Example of converting the RESTful API specification into a request template, and what a generated request and its
corresponding response look like.

services they are currently using; 2) use the POST method to create
virtual machine instances, containers, and databases; 3) use the
PUT method to update resource information; 4) use the DELETE
method to remove a specific resource. These actions allow for the
exploration of the cloud service’s states. By automatically gener-
ating and sending request sequences via a cloud service’s REST
API, a black-box testing tool can explore errors hidden in different
states and discover vulnerabilities such as command injection, data
leakage, and improper access management.

2.1.3 IoT System API. In the IoT sector, MQTT is a widely used
lightweight messaging protocol for small sensors and mobile de-
vices. It enables efficient and reliable transactions between IoT
devices and the server. For instance, within an MQTT API, a client
can 1) subscribe to topics to receive updates or sensor data from
devices; 2) publish messages to a topic to send commands or config-
uration changes to the devices; 3) use Quality of Service (QoS) levels
to ensure message delivery according to the required assurance; 4)
utilize retained messages for persisting the last relevant message
for future subscribers. These MQTT API operations are integral
to the real-time, event-driven nature of IoT communications. By
rigorously testing MQTT API messages and topic subscriptions,
security tools can identify vulnerabilities such as improper message
handling, insecure topic subscriptions, and potential eavesdropping
risks.

2.2 OpenAPI Specification and Swagger
Typically, the owners of APIs publish accessible API declarations
to guide users in their utilization. OpenAPI Specification (OAS)
[7] is a widely recognized standard for describing RESTful APIs,
offering a language-agnostic approach to empower both humans
andmachines to understand the capabilities of anAPIwithout direct
access to its source code, thereby facilitating easier integration and
consumption. Concurrently, users can leverage tools like Swagger
[16], which utilizes the OAS description to automatically generate
code for calling the API. This code can then be seamlessly integrated
into their projects.

2.3 API Vulnerability Fuzzing
Existing API fuzzing approaches [4, 8, 22, 40] are proposed to ex-
plore errors hidden in the reachable execution states of an API
service. Initially, the fuzzing tool reads the information from the

OAS file, parsing essential details such as the API’s access paths,
authentication mechanisms, and parameter structures, and gener-
ates a request template with fuzzable parameters. Subsequently, it
selects specific test vectors from a predefined fuzzing library, tai-
lored to the different parameters included in the API. These vectors
are used to insert or replace existing parameter values, creating
requests that conform to the API’s parameter structure. Finally, the
tool sends the complete test requests to the target API, retrieves
the response data, and compares this data against predefined re-
sponse checkers. This process helps in determining the presence of
API errors or security vulnerabilities. The main modules of an API
fuzzer are as follows.

2.3.1 API Parameter Parsing. API fuzzing tools necessitate the
parsing of the API’s request message structure, followed by the
construction of request templates for subsequent fuzz testing pro-
cedures. The process unfolds as follows: Initially, the testing tool
is required to read the OAS file of each API, which encompasses
critical details such as the API request path, request methods, pa-
rameter names, and input constraints, as illustrated in Figure 1a.
To obtain the API specification, users have two primary methods:
1) manually defining the API’s path and parameter structure by
reading the API documentation published by the vendor on a web
page, and 2) automatically parsing it from the publicly available
OAS URL or Swagger file provided by the API supplier. Then, based
on the specification, the fuzzer performs a static analysis to con-
struct request templates as shown in Figure 1b. In the template,
different types of variables are utilized to assemble a complete API
request. Here, the Static type represents immutable strings that
ensure the legality of the request message and are not subject to
alteration. The Consumer type requires the input of specified data
with contextual dependencies. Values of the Fuzzable type are
designated for the subsequent phase of test vector generation. In
this phase, these values are replaced or mutated with diverse test
vectors to conduct the request.

2.3.2 Testing Vector Generation. In this module, the fuzzer assigns
a value for each parameter in the request and constructs a complete
request that is ready to be sent in a sequence template. As shown
in Figure 1b, the request template GET /console/{id} contains
2 parameters, {id} and cmd, that need to be set. To generate a
ready-to-use request, there are two methods to obtain a parameter
value, which are 1) selecting an alternative value from a pre-defined
vulnerability testing dictionary (e.g., SecLists [13]) or 2) reading a
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target object from the response of a previous request [22]. As for
the parameter id, the fuzzer will read a target object value from
the response of another API, which provides a valid id object after
creation. The generated testing request is in Figure 1c, which sets
a command injection vulnerability payload cat /etc/passwd for
parameter cmd.

2.3.3 Vulnerability Verification. After completion of the test re-
quest generation, the fuzzer dispatches the request to the target
API and examines its response to determine the presence of any
vulnerabilities. For instance, as shown in Figure 1d, the API’s re-
sponse includes content from the /etc/passwd file (a Linux system
file path), which indicates that the command cat /etc/passwd
was successfully executed and suggests a command injection vul-
nerability.

By utilizing the above main modules, existing API fuzzers au-
tomatically generate requests to test different services via their
APIs. However, they still have limitations in parameter parsing
and request generation phase, resulting in slow state exploration
progress, which is the main focus of this paper.

3 DESIGN AND IMPLEMENTATION
3.1 Challenges in API Vulnerability Testing
3.1.1 API Parameter Structure Parsing. Fuzzer first needs to under-
stand the parameter structure of the API before it can perform
mutation testing on different API parameters. The process of pa-
rameter parsing includes two issues:

• Generalizability: Existing research [20–23, 27–29, 32, 34,
38–40, 42, 45, 46, 48] is only applicable to RESTful APIs and
cannot address other scenarios mentioned in Section 2.1,
including API types such as SOAP and GraphQL in web
applications, gRPC in cloud applications, and MQTT in IoT
systems. The parameter structures of APIs with different
styles and protocols have similarities (Figure 2), allowing us
to abstract a unified expression method that enables fuzzing
techniques of RESTful API to be widely applied to more
scenarios.
• Parameter Encodings: Another challenge is recognizing
complex encoding structures and parameter relationships
within APIs. This ensures that test vectors accurately target a
specific parameter without interfering with the functionality
of others. For instance, common APIs encapsulate param-
eters in HTTP request bodies utilizing formats like JSON,
XML, and various array-type objects that include nested
encoding within the values of parameters.
As illustrated in Listing 1, the pfile parameter value is in
base64 encoding, and the info parameter contains XML-
structured data. Without proper encoding recognition and
parameter parsing, blindly altering the content in a mes-
sage for fuzz testing leads to format errors in API responses,
hindering the discovery of vulnerabilities.

3.1.2 Testing Vector Generation. Testing APIs in a reasonable order
within the same application is crucial. API parameters often depend
on each other, where a value string in response data from one API
might be a valid request parameter value in another API. Directly
injecting data without considering these dependencies can result

in meaningless outcomes and generate numerous invalid test re-
quests, adversely affecting the efficiency of fuzzing. Additionally, in
some large-scale applications, to complete testing within a limited
timeframe, it is essential to calculate the priorities of these APIs to
enhance the efficiency of the testing process.

3.1.3 Priority Testing Path Selection. API security testing typically
faces a large base number of APIs and the accompanying number of
API call dependency paths. This often requires numerous payload
injection attempts on a single API or a specific API call path, result-
ing in security testing results taking a considerable amount of time
to converge. This issue is especially pronounced in scenarios where
session lifetimes are limited, potentially allowing only a limited
number of path tests to be completed before the session expires.
By evaluating testing priority, we can prioritize testing of APIs and
API call paths with higher probabilities of vulnerabilities within a
given timeframe.

Listing 1: Encodings in the API request parameters

POST /user/update HTTP /1.1
HOST: 127.0.0.1

{
"uid": 14175246 ,
"timestap ": 1668933016 ,
"userdata ":{

"pfile": "dV8xNDE3NTIONi5wbmc ="
"info": "<?xml version =1.0 encoding=UTF -8?><

note ><age >18</age ><name >jack </name ><gender
>male </gender ></note >"

}
}

Listing 2: Interdependence in API parameters

POST /api/forum/posts HTTP /1.1
Host: exampleforum.com

{
"category ": "Technology",
"title": "The Future of Open Source",
"authorName ": "Alex Doe",

}

3.1.4 API Parameter Interdependency. API parameter fuzzing is a
key method to detect API vulnerabilities, as any position within an
API’s parameters could potentially trigger a vulnerability. Typically,
fuzzers change just one parameter with each API request, leading
to massive testing requests and slowing down the fuzzing process.
If we can identify the interdependencies of parameters, we can test
multiple parameters at once in a single request, thereby enhancing
the efficacy of the fuzzing process.

Listing 2 shows an API request for posting an article on a forum.
When submitted, the system checks if the given category value
already exists, returning an error message if it hasn’t been found.
Fuzzers testing both category and title parameters concurrently
in a single request will find that test vectors of title are ineffective.
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GET /console/command/
get_status /12345 HTTP
/1.1

Host: test.com
...
...
...

(a) RESTful API request

<soapenv:Body >
<con:GetConsoleCommand >
<con:id >12345 </ con:id>
<con:cmd >getStatus </con:

cmd >
</con:GetConsoleCommand >
</soapenv:Body >

(b) SOAP API request

query {
getConsoleCommand(

id: "12345" ,
cmd: "getStatus"

)
{result}

}

(c) GraphQL API request

console/commands/get
...
{

"id": "12345" ,
"cmd": "getStatus"

}
...

(d) MQTT API request

Figure 2: Examples of API requestmessages for a query containing two parameters, id=12345 and cmd=getStatus, under different
API protocols.

Therefore, they require two separate requests to validate these pa-
rameters. However, since title and authorName are independent,
fuzzers can make mutations for both in just one request.

3.2 Design of APIF
Our design goal is to create a practical API vulnerability fuzzing
framework that exhibits enhanced generalizability, effectiveness,
and efficiency. It can be broadly applicable across various API types,
addressing the challenges of complex parameter encoding, sequence
constraints, and parameter constraints to ensure the effective injec-
tion of test vectors. Moreover, it can prioritize test targets based on
the likelihood of vulnerability occurrence. and concurrently mutate
multiple parameters in a single request, minimizing the consump-
tion of computational and network I/O resources, thus providing
efficiency in real-world scenarios of large-scale, batch fuzzing of
APIs.

Building upon these design objectives, we introduce APIF, a
comprehensive black-box API vulnerability fuzzing framework. It
enhances the fuzzing process in three ways. Firstly, it decodes en-
coded API parameter values and parses them to a unified tree-based
structure. Secondly, it calculates the likelihood of vulnerabilities and
identifies the dependencies across APIs to create a proper testing
sequence. Thirdly, it checks the interrelations among API param-
eters to allow simultaneous injection of multiple test vectors in a
single request. These improvements come from the shortcomings
of existing API fuzzing works. The overall process is structured as
Figure 3.

3.2.1 API Acquisition. The process begins by deploying a well-
known proxy server MitmProxy [6] on the client side, acting as
a man-in-the-middle to intercept API communication data. The
intercepted message provides insight into the API structure and
parameters, forming the basis for further analysis and testingwithin
the APIF framework.

Contrasting with the analysis of API parameters through OAS
files, parsing API parameter structures from real API communi-
cation traffic offers two main advantages: 1) The feasibility of ob-
taining API parameter structures via OAS depends on the type of
API and the maintenance of API declaration files. In real-world
scenarios, not all APIs have accessible declaration files. However,
interactions for APIs of all protocols can be obtained through traf-
fic capture. 2) By analyzing API traffic, we can observe not only
the API’s parameter structure but also acquire valid parameter val-
ues. This is beneficial in addressing the context-dependency issues

between different APIs, thereby facilitating the determination of
reasonable testing sequences and enhancing test coverage.

3.2.2 API Parameter Parsing.Our proposed API parameter parsing
algorithm addresses the following two issues: 1) Different types
of APIs have different protocols and parameter formats. To make
the fuzzer more universally applicable, we need a unified data
structure to represent API parameters. 2) As mentioned earlier, the
decoding work of API parameter values affects the implantation of
subsequent test vector generation and parameter mutation phase,
which is important for the effectiveness of API vulnerability fuzzing.

We implemented parsers for extracting parameter content from
API communications across multiple protocols. Initially, we deter-
mine the protocol of the API request message through protocol
feature matching. We developed a protocol-type detection mod-
ule based on feature recognition for common API communication
protocols. For instance, RESTful APIs can be effectively identified
by features such as URL patterns, version parameters, and the AC-
CEPT header. GraphQL APIs can be distinguished by their data
structures and specific operation fields like "query," "mutation," or
"subscription." SOAP APIs can be recognized through the XML data
format and distinctive nodes such as Envelope, Header, Body, and
Fault.

Subsequently, for various API protocols, we employ the cor-
responding parsing libraries to capture the parameters and their
values. This process involves recursive decoding to organize the
API parameters and values into a unified tree structure, as detailed
in Algorithm 1.

The recursive decoder will attempt to decode parameters that
are encoded, if the presence of structured objects (e.g., JSON, XML,
array-type data, etc.) is detected, the recursive decoder transforms
the encoded API parameter values in the intercepted API request
parameters (Listing 1) into a tree structure (Figure 4). The parameter
parsing algorithm can effectively convert all key-value parameters
into a comprehensive tree structure. This facilitates a more in-depth
analysis and understanding of the API’s encoding and parameter
structures, which is crucial for further vulnerability fuzzing. The
significant innovation compared to other tools is that the injec-
tion of test payloads will be conducted at every node within the
tree structure. This elevates the granularity of fuzz testing from
the parameter level to each node within the structured objects of
the parameter, enabling us to perform very deep fuzz testing and
significantly increasing the likelihood of discovering previously
hard-to-detect security vulnerabilities. Besides, it exhibits a certain
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Figure 3: APIF API vulnerability fuzzing process. Figure 4: API parameters in tree structure.

degree of generalizability across different API communication pro-
tocols, which is more universally applicable compared to previous
studies where a mutation template was generated for each target
API (Figure 1b).

Algorithm 1 API Parameter Parsing Process
Input: Origin API request message request_data
Output: Tree-structured API parameters arg_tree

1: arg_tree← parse_api(request_data)
2: function parse_api(request_data)
3: arg_tree← {}
4: arg_tree.add_node(request_data)
5: arg_tree← recursive_decode(arg_tree)
6: return arg_tree
7: end function
8: function recursive_decode(arg_tree)
9: for node in arg_tree.child_nodes() do
10: type← get_datatype(node.value)
11: if type in (XML, JSON, . . .) then
12: tree← decode(node.value)
13: node← recursive_decode(tree)
14: end if
15: end for
16: return arg_tree
17: end function

3.2.3 Testing Priority Calculation. APIF calculates the probability
of vulnerabilities in APIs by utilizing API request elements. This
calculation is used to prioritize APIs for testing and maximize the
discovery of vulnerabilities within a set time frame, thereby enhanc-
ing testing efficiency. In this field, the common priority calculation
methods of fuzz testing [44, 46] encounter significant issues when
applied to APIs, such as 1) The factors leading to vulnerabilities in
APIs differ from those causing errors; 2) Black-box testing makes
it difficult to obtain detailed test coverage metrics, such as code
or function-level execution coverage. Drawing on the experience
in API-related vulnerability mining and the verification of public
vulnerability datasets, we identified three metrics for assessing the
likelihood of API vulnerabilities:

• The more parameters a user can input, the greater the proba-
bility of vulnerabilities. This is because a significant portion

of API vulnerabilities are caused by improper handling of
user inputs.
• The more complex the parameter types in an API, the higher
the likelihood of discovering vulnerabilities. Complex param-
eter types imply that there are queries and functionalities
associated with various types of data in the API. The com-
plexity of the datatype leads to an increased possibility of
security vulnerabilities.
• The more request methods an API supports, the higher the
probability of finding vulnerabilities. For example, an API
access path that supports GET, POST, UPDATE, and DELETE
typically involves more complex operational functionalities
and code logic, frequently leading to risky entity operations,
as well as permission issues.

APIF defines API testing priority by a fast risk-evaluate algo-
rithm with three indicators. The higher these scores, the more
complex the functionality of the API and the higher the probability
of vulnerabilities occurring.

• Parameter Coverage Rate. This is calculated by dividing
the number of parameters in a single API by the total number
of parameters across all APIs in the test scope.
• Parameter Value Coverage Rate. Considering the variety
in parameter types (e.g., int, float, str, null, bool), this
rate is calculated by dividing the number of parameter value
types in a single API by the total number of parameter value
types in all APIs within the test scope.
• Operation Method Coverage Rate. For an API with op-
eration methods like GET, POST, PUT, and DELETE, we
calculate this rate by dividing the number of operation types
in a single API by the total number of operation types in all
APIs within the test scope.

To neutralize the impact of scale and distribution differences
between calculation indicators, we employ the Z-score method [36]
for data normalization. This method standardizes data based on the
mean 𝜇 and standard deviation 𝜎 of the original dataset, aiming to
unify different magnitude data onto the same scale.

𝑥 ′ =
𝑥 − 𝜇
𝜎

(1)

The transformation function for the Z-score is represented above
(1), where 𝑥 represents each observation value of the calculation
criteria. For instance, if the operation method coverage results in
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a test API are 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 then after applying the Z-score for-
mula, the new sequence for the operation method standard becomes
𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛 , each with a mean of 0 and a variance of 1.

A linear regression [26] function is performed on these variables:
vulnerability probability ℎ𝜃 (𝑥) , operation method coverage rate
𝑥1, parameter coverage rate 𝑥2, and parameter value coverage rate
𝑥3. We analyzed 206 API vulnerabilities in open-source systems
reported in CVEs from February 2022 to June 2023 as our dataset.
We calculated these three coverage rates and the associated prob-
abilities of vulnerabilities to determine their weights. The results
are presented as (2).

ℎ𝜃 (𝑥) = 0.735𝑥1 + 0.461𝑥2 + 0.223𝑥3 + 0.551 (2)

3.2.4 Testing Vector Generation. After calculating the vulnerability
probabilities and confirming the priority of the APIs to be tested,
APIF will use constraint solving method to generate test vectors
that have a proper sequence to fit the contextual dependencies
(Section 4.1). Subsequently, APIF will perform a parameter indepen-
dence analysis, and try to mutate multiple parameters in one test to
reduce the total number of tests and improve overall test efficiency
(Section 4.2). After confirming the concurrent testing strategy for
parameters, APIF will retrieve payloads from the predefined fuzzing
library and conduct mutation based on the previously generated
unified tree structure (Section 4.3). Finally, it will re-encode the
payloads according to the parameter’s encoding type and send the
test requests (Section 4.4).

3.2.5 Vulnerability Verification. Each test vector corresponds to
a specific verification method to determine the presence of secu-
rity vulnerabilities in the current API and identify their types. We
summarize these methods into three types:

• Content Matching in Response Messages. For instance,
in the case of using a fuzzing vector for Cross-Site Scripting
(XSS) vulnerabilities, we verify if the API response content
includes specific strings like JavaScript payloads or injected
DOM elements. Similar approaches are also applicable to
vulnerabilities such as data exposure, file uploads, command
execution, and various other types.
• Verification Based on Response Status Codes. During
the constraint-solving phase for the API sequence, a valid
request typically has a 200 status code. This model is ad-
vantageous for detecting vulnerabilities with distinct status
codes. For example, if a response to a Denial of Service (DoS)
attack vector returns status codes 503 or 504, which confirms
the presence of such a vulnerability in the API.
• Verification Based on Response Time. A prime example
is identifying SQL time-based blind injection vulnerabili-
ties. Here, if the attack vector includes SQL’s sleep function,
we monitor changes in response times before and after the
vector is embedded.

Based on the three verification methods above, we have delin-
eated 13 common types of API vulnerabilities, which include: Data
Exposure, Command Injection, Broken Object Level Authorization,
File Read Vulnerability, Broken Authorization, Server-Side Request
Forgery (SSRF), SQL Injection, Security Misconfiguration, Denial of
Service (DoS), Improper Error Handling, Cross-Site Scripting (XSS),

Content Security Policy (CSP) Not Implemented, and Unvalidated
Redirects.

4 OPTIMIZATION OF TEST VECTOR
GENERATION PHASE

4.1 Constraint Solving
It is necessary to test different APIs sequentially in the appropriate
order. For instance, in an e-commerce payment system [15], after a
product purchase order is created, it can be paid for. Therefore, we
cannot directly initiate tests on the payment interface; instead, we
must first create an order.

In APIF, we designed an algorithm that calculates a set of request
sequences based on API traffic (Algorithm 2).

Algorithm 2 API Request Constraint Solving
Input: All API request set req_set
Output: Valid test sequence seq

1: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← calc_seq(req_set)
2: function calc_seq(𝑟𝑒𝑞)
3: 𝐾 ← 1
4: 𝑠𝑒𝑞 ← []
5: while 𝐾 < length(𝑟𝑒𝑞) do
6: for 𝑖 ← 1 to 𝑁 do
7: for 𝑗 ← 1 to𝑀 do
8: if depends(𝑟𝑒𝑞 [𝑖], 𝑟𝑒𝑞[ 𝑗]) then
9: 𝑠𝑒𝑞.add(𝑟𝑒𝑞 [𝑖], 𝑟𝑒𝑞[ 𝑗])
10: 𝑠𝑒𝑞 ← render(𝑠𝑒𝑞)
11: end if
12: end for
13: end for
14: 𝐾 ← 𝐾 + 1
15: end while
16: return 𝑠𝑒𝑞
17: end function
18: function render(𝑠𝑒𝑞)
19: for 𝑖 ← 1 to 𝑁 do
20: 𝑟𝑒𝑞 ← last_req(𝑠𝑒𝑞 [𝑖])
21: for 𝑗 ← 1 to 𝐿 do
22: 𝑛𝑒𝑤𝑠𝑒𝑞 ← concat(𝑠𝑒𝑞 [ 𝑗], 𝑟𝑒𝑞)
23: 𝑟𝑒𝑠𝑝 ← send(𝑛𝑒𝑤𝑠𝑒𝑞)
24: if 𝑟𝑒𝑠𝑝 has no valid error then
25: 𝑠𝑒𝑞.add(𝑛𝑒𝑤𝑠𝑒𝑞)
26: end if
27: end for
28: end for
29: return 𝑠𝑒𝑞
30: end function

The algorithm initially includes an empty sequence and consid-
ers a sequence valid if each request in it returns a valid response
code, defined as any code within the 200 range. The algorithm iter-
atively calculates request sequences of increasing length, starting
from 𝑛 = 1. For each set of valid sequences of length 𝑛− 1, it creates
new sequences of length 𝑛 by adding requests with satisfied depen-
dencies to the end of each sequence. The function render checks if
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all dependencies of a specified request are met. A sequence is valid
if every dynamic object required as a request parameter is produced
by a response represented earlier in the sequence. New sequences of
length 𝑛 are retained if all relations are satisfied, otherwise, they are
discarded. If a dynamic object, used as a parameter in a subsequent
request, is destroyed after that request, the algorithm detects this
by receiving an invalid status code (outside the 200 range) when
attempting to reuse the object and discard that request sequence.

4.2 Parameter Independence Analysis
Current API fuzzing methods typically mutate one parameter at a
time to ensure comprehensive testing, leading to a high number
of tests. To address this inefficiency, we developed a parameter
independence algorithm. This algorithm analyzes inter-parameter
correlations, identifying independent parameters of APIs. In black-
box fuzzing, this allows for simultaneous mutation of multiple
uncorrelated parameters in each request, significantly reducing the
number of tests and improving vulnerability discovery efficiency.

For an API with 𝑛 optional parameters in (3), assuming there
are 𝑃1, 𝑃2, . . . , 𝑃𝑛 valid payloads for each parameter and 𝑄 invalid
payloads, a total of 𝑆 tests are needed.

𝑆 = 𝑄𝑛 +
𝑛∏

𝑘=1
𝑃𝑘 (3)

Typically, bugs (or vulnerabilities) are triggered by a single or a
pair of inputs, bugs resulting from combinations of three or more
factors are rare. Therefore, reducing test cases to the minimum
effective input changes needed to trigger bugs is crucial. If each test
case not only changes one parameter in the API, 𝑅 test cases are
generated in (4), substantially reducing the number of test cases.

𝑅 = 𝑄𝑛 +
𝑛∑︁

𝑘=1
𝑃𝑘 (4)

Building on this, if changing parameters 𝑛1, 𝑛2, . . . , 𝑛𝑘 results in
a response structure identical to the original, and changing 𝑛𝑖 indi-
vidually results in a different response, subsequent tests can embed
payloads for 𝑛1, 𝑛2, . . . , 𝑛𝑘 simultaneously to further improve test
efficiency. This algorithm is described in pseudocode in Algorithm
3.

For example, an API with three distinct parameters A, B, and
C, having 3, 4, and 5 valid payloads respectively, would typically
require 60(3 × 4 × 5) tests for comprehensive testing. Additionally,
testing with invalid payloads, such as using a string for an int
parameter, is necessary. Considering APIs usually transmit data
in JSON format with basic types like int, float, str, null, and
bool, this adds 15(3 × 5) more tests for invalid formats. However,
if changing parameters A and B individually results in the same re-
sponse structure as the original, while changing C yields a different
response, then in subsequent tests, payloads for A and B can be em-
bedded simultaneously, reducing the total tests to 26(3+3+5+5×3).
This significantly lowers the number of tests required.

In the above process, the independence of parameter A and pa-
rameter B is analyzed and ensured through bidirectional validation.
The algorithm, in the first loop, first mutates parameter A to obtain
resp, and then, based on the already mutated parameter A, con-
tinues to mutate parameter B to obtain resp1. In the second loop,

Algorithm 3 API Parameter Independence Analysis
Input: API request parameters tree req_tree
Output: API parameters can be mutated in one request params

1: params← check_independence(req_tree)
2: function check_independence(req_tree)
3: params← []
4: args← req_tree.iterate_nodes()
5: for arg in args do
6: flag← True
7: req← mutate(arg)
8: resp← send_reqest(req)
9: for arg_others in req_tree.nodes() do
10: req_1← mutate(arg, arg_others)
11: resp_1← send_reqest(req_1)
12: if check_similarity(resp, resp_1) then
13: flag← False
14: end if
15: end for
16: if flag == True then
17: params.add(arg)
18: end if
19: end for
20: return params
21: end function

the algorithm first mutates parameter B to obtain resp, and then,
based on the already mutated parameter B, continues to mutate
parameter A to obtain resp1. Only when the structures of resp
and resp1 completely match in both loops do we mark parameters
A and B as independent parameters and proceed with simultaneous
testing in subsequent steps.

4.3 Parameter Tree Mutation
After the initial steps, parameters in the API test sequence are
marked as fuzzable primitives. Test vectors are inserted into these
primitives, replacing their original values, based on a user-configured
vulnerability dictionary [13]. For API parameters identified as “in-
dependent” in the analysis phase, multiple testing vectors are em-
bedded in a single test request.

APIF introduces four fundamental mutation strategies to en-
hance API vulnerability fuzzing, as illustrated in Figure 5. Firstly,
it allows for the mutation of either the name or value of a specific
parameter node. For instance, injecting a payload specifically into
the uid parameter (Figure 5a). Secondly, the framework supports
the traversal and mutation of all nodes satisfying specific filter
criteria. An example is applying a command injection vulnerability
test vector to all nodes with a string data type (Figure 5b). Thirdly,
APIF facilitates the addition of new nodes to the request parameters,
such as inserting a node named admin with the value true could
help bypass permission checks (Figure 5c). Lastly, the deletion of
nodes is also supported; removing parameters related to the identity
might expose vulnerabilities in the authentication process due to
inadequate validation policies (Figure 5d). These mutation methods
are capable of identifying various types of API vulnerabilities and
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are adaptable to different API formats such as RESTful, GraphQL,
SOAP, and gRPC, demonstrating a high level of generalizability.

(a) Modify the value of a specific
node.

(b)Modify all nodes thatmeet the
specified criteria.

(c) Mutation by creating new leaf
nodes.

(d) Mutation by deleting target
nodes.

Figure 5: Parameter tree mutation methods of APIF.

4.4 Recursive Encoding and Send Requests
After replacing original values with auto-generated test vectors
based on SecLists [13], we use a recursive encoder to re-encode
the test vectors into their original format. This process restores the
tree structure to the API communication format, altering only the
parameter values of the fuzzable primitives into test vectors, while
keeping the overall request structure and syntax intact. This step
maximizes the consistency of parameter encoding and decoding,
reducing the likelihood of parameter handling anomalies. Conse-
quently, it increases the chances of payloads becoming effective.
After encoding, the modified API requests are sent out, and the
responses received then move on to the result verification phase.

5 EVALUATIONS AND RESULTS
5.1 Dataset
To validate our research, we selected 4 API vulnerability sandboxes
widely used in API fuzzing approaches and 3 real-world API projects
as fuzzing targets. This dataset not only encompasses the compre-
hensiveness of API vulnerabilities but also offers practicality in
real-world environments.

The API vulnerability sandboxes are:
• crAPI [10]: A project aimed at helping testers understand
key API security risks. It is designed to be easily attacked,
providing a practical testbed for API fuzzers.
• vAPI [18]: Another API vulnerability playground simulates
OWASP API Security Top10 [9].
• APISandbox [2]: It offers a broader range of API attack sce-
narios, including issues under 4A authentication systems,
GraphQL-based message boards, classic API vulnerabilities,
WSDL leaks, and unauthorized server access.
• VAmPI [17]: A collection of vulnerable APIs made with
Flask, featuring vulnerabilities from the OWASP API Se-
curity Top10 [9], aimed at evaluating the efficiency of tools
in detecting API security issues.

For these API vulnerability sandboxes, we obtained both the vul-
nerable APIs and the normal APIs from the project documentation
as labels for positive and negative samples.

To measure APIF’s performance in real-world API applications,
we tested three open-source projects: Spree [15], GitLab-CE [5],
and SilverStripe [14], which are widely used in real business en-
vironments. We obtained vulnerabilities from the official security
updates for these three projects over the last three years, which
serve as positive examples in our dataset.

The final dataset encompasses 7 projects with a total of 412 APIs
and 112 security vulnerabilities. The types of these vulnerabilities
were also cataloged as shown in Table 1.

5.2 Fuzzers
To validate our research, we compared APIF with 3 state-of-the-art
API fuzzers:
• RESTler [12]: The first stateful RESTful API fuzz testing
tool, designed to test errors in services through REST APIs
automatically. It was later improved by researchers for the
detection of security vulnerabilities [23] and is considered
a representative research achievement in the field of API
vulnerability fuzzing.
• Fuzzapi [4]: The most popular API vulnerability fuzzer on
GitHub, allows security experts to discover vulnerabilities in
APIs by conducting fuzz tests with various attack payloads,
and is widely applied in real-world vulnerability testing sce-
narios.
• OpenAPI-Fuzzer [8, 30]: Another popular open-source API
vulnerability fuzzer in the industry that has already discov-
ered several API vulnerabilities in public systems such as
Kubernetes, Vault, and Gitea.
• APIF-A: The complete technical implementation based on
this APIF framework, developed in Golang. It includes API
parameter tree structure parsing, vulnerability probability
calculation, and concurrent testing based on parameter in-
terdependency analysis.
• APIF-B: A partial implementation of our proposed theoretical
framework. Unlike APIF-A, it doesn’t perform vulnerabil-
ity probability calculation and independence analysis. Each
request undergoes a single mutation.

5.3 Testing Vector Library
The effectiveness of API fuzzing tools depends not only on the
framework but also on the crafted test vector library. To avoid bias
from expert experience, we used the well-known security vulnera-
bility testing library SecLists [13], which contains different types
of vulnerability testing payloads as our test vector library. By stan-
dardizing the vector library across tools, we can more accurately
compare the strengths and weaknesses of different tools in terms of
framework and algorithmic design. All tools above were configured
to use only vectors from SecLists [13] for automated testing without
manual intervention.

5.4 Setup and Metrics
Our experiments were conducted on an Ubuntu 20.04 system with
an Intel I7 processor and 16GB of RAM. We ran tests using RESTler,
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Fuzzapi, OpenAPI-Fuzzer, APIF-A, and APIF-B.We recordedmetrics
including total testing time, time to reach 50% and 90%API coverage,
network metrics, and the vulnerability output indicators:
• Vulnerability Reported (TP+FP): Refers to the automatic cal-
culation and reporting of vulnerability results by each fuzzer.
A piece of vulnerability information contains three key el-
ements: 1) The type of vulnerability, 2) the API endpoint
where the vulnerability is located, and 3) the parameter po-
sition that triggers the vulnerability.
• Vulnerability Verified (TP): Refers to the process of manually
verifying that the vulnerabilities produced by fuzzers (the
three elements mentioned above) are completely the same
as the records in the dataset, we mark the vulnerability as
"Verified".

Since the tools RESTler, Fuzzapi, and OpenAPI-Fuzzer require
parsingAPI parameter structures fromOpenAPI Specification (OAS)
files, we generated OAS files for 412 target APIs uniformly. Addition-
ally, we used Postman (an API debugging tool capable of sending
messages to APIs and receiving responses) [11] to trigger access
behavior for each API. This allowed the MITM modules of APIF-A
and APIF-B to capture the API communication traffic and thereby
deduce the structure of the API parameters. Furthermore, both the
target programs and testing tools were configured with valid au-
thentication sessions. These setups ensure that all fuzzing tools
are applicable to all target APIs, eliminating the impact on testing
effectiveness due to the inability to obtain the structure of API
parameters (e.g., missing OAS files or lack of API access traffic) and
addressing the issue of missing authentication mechanisms.

5.5 Results
We conduct API vulnerability testing on all target APIs in the
dataset. Figure 6a illustrates the number of vulnerabilities reported
by each tool. After comparing the results against the dataset, the
actual number of API vulnerabilities is shown in Figure 6b. The
detailed vulnerabilities identified by each tool are listed in Table 1.

(a) Vulnerabilities reported by
each fuzzer (TP+FP).

(b) Vulnerabilities confirmed af-
ter check (TP).

Figure 6: Number of vulnerabilities discovered by each fuzzer.

The detailed metrics for each tool, including total testing time,
time to achieve 50% and 90% API coverage, network I/O counts,
network traffic, and vulnerability count, as shown in Table 2.

We compare the experimental results of different tools from
several perspectives: effectiveness, efficiency, and generalizability.
We also conducted ablation testing and evaluated the effectiveness
of vulnerability detection in real-world scenarios.

Table 1: The true positive result of each fuzzer

Vulnerabilities in Dataset Discovery of Each Fuzzer (TP)
Vulnerability Type Count RESTler Fuzzapi OpenAPI-

Fuzzer
APIF-
A

APIF-
B

Data Exposure 11 4 6 3 6 6
Command Injection 9 0 3 6 6 6
Broken Object Authorization 13 3 1 4 8 8
File Read Vulnerability 8 2 2 4 4 4
Broken Authentication 12 3 2 6 6 6
Server-side request forgery 9 3 2 4 5 5
SQL Injection 9 1 0 0 5 6
Security Misconfiguration 5 2 0 1 0 0
Denial of Service 7 2 2 4 4 4
Improper Error Handling 4 1 0 0 0 0
Cross-site scripting 8 2 4 2 7 7
CSP Not Implemented 3 1 1 1 1 1
Unvalidated Redirects 5 1 0 0 1 1
Others 9 2 3 2 2 3

Total 112 27 26 37 55 57
Recall (%) - 24.1 23.2 33.0 49.1 50.9

Table 2: Metrics and comparison

Test Items RESTler Fuzzapi OpenAPI-
Fuzzer

APIF-
A

APIF-
B

Total testing time (minute) 248 238 214 109 265
50% API coverage time (minute) 123 117 102 59 131
90% API coverage time (minute) 219 211 188 97 233
Network I/O counts (thousands) 430 387 366 163 482
Network traffic (MB) 242.1 219.9 206.5 96.8 275.4
Vulnerabilities reported 63 79 68 93 96
Vulnerabilities verified 27 26 37 55 57
Recall (%) 24.1 23.2 33.0 49.1 50.9
Precision (%) 42.9 32.9 54.4 59.1 59.4

Table 3: Real-world vulnerabilities discovered by APIF

Vulnerabilities Discovered by APIF Detected (•)
ID Type RESTler Fuzzapi OpenAPI-

Fuzzer

CVE-2022-35509 Cross-site Scripting
CVE-2022-39054 Cross-site Scripting • •
CVE-2022-41471 Broken Authorization
CVE-2022-41472 Cross-site Scripting
CVE-2022-42154 Unrestricted File Upload •
CVE-2022-42735 Broken Authorization • •
CNVD-2022-56311 Cross-site Scripting
CNVD-2022-67082 Sensitive Data Exposure
CNVD-2022-70325 Sensitive Data Exposure •
CNVD-2022-70707 SQL Injection
CNVD-2022-70700 Broken Authorization •
CNVD-2022-71314 Broken Authorization • • •
CNVD-2022-73094 Command Injection • •
CNVD-2022-73085 Unrestricted File Read • •
CNVD-2022-73214 Cross-site Scripting
CNVD-2022-73378 Broken Authorization
CNVD-2022-73407 Unrestricted File Upload • •
CNVD-2022-74556 Broken Authorization
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5.5.1 The Comparison of Effectiveness. Table 2 reveals that APIF-A
and APIF-B outperform the other tools in terms of vulnerability de-
tection recall and precision. In addition to the fact that real API com-
munications typically contain more information, many parameters
can only be effectively tested after undergoing recursive decoding
and encoding. With a consistent test payload library, this indicates
that our API parameter decoding and tree-structured mutation sig-
nificantly contribute to enhancing the coverage of vulnerability
testing, enabling the discovery of more hidden issues.

5.5.2 The Comparison of Efficiency.While producing similar vul-
nerability results, APIF-A saves 58.9% of the testing time compared
to APIF-B, and also significantly reduces the amount of network I/O
requests and network traffic consumption. This demonstrates that
the API parameter independence analysis algorithm we employed
in the test vector generation phase effectively reduces the number
of tests and enhances overall testing efficiency. The concurrent
testing of parameters resulted in APIF-A identifying 2 fewer vulner-
abilities than APIF-B, indicating that the accuracy of the algorithm
requires further optimization.

Additionally, based on the vulnerability discovery curve of APIF-
A in Figure 6b, we observe that APIF-A reported 76.4% of its vul-
nerability detection in the first half of the testing time. The di-
minishing slope of APIF-A’s data curve indicates that the testing
priority calculation algorithm effectively prioritizes high-risk APIs.
For real-world large-scale application testing, there is a prevalent
objective to discover a maximal number of security vulnerabilities
within a constrained time. This imperative lends considerable cre-
dence to the feasibility of deploying APIF in extensive, real-world
applications.

5.5.3 The Comparison of Generalizability.We observed that the
SilverStripe [14] project contains four GraphQL API vulnerabilities:
CVE-2023-44401, CVE-2023-40180, CVE-2023-28104, and CVE-2021-
28661. As mentioned earlier, existing research on API vulnerabilities
has made optimizations for RESTful APIs but has not taken into
account other types of APIs. Therefore, the tools RESTler, Fuz-
zapi and OpenAPI-Fuzzer did not identify the four vulnerabilities.
Meanwhile, APIF-A and APIF-B successfully identified two of those
vulnerabilities, CVE-2023-28104 and CVE-2023-40180. Triggering
these vulnerabilities requires further decoding of the GraphQL mes-
sages before inserting test vectors. Our APIF framework’s recursive
decoder and tree structure mutation accomplished this task, in-
dicating that the theoretical approach of APIF is effective across
different API protocols, offering greater generalizability.

5.5.4 Ablation Study. To investigate how the API parameter inde-
pendence analysis and priority calculation strategy contribute to
improving the efficiency of APIF, we conducted an ablation study
on these two main components. We implemented different variants
of APIF: 1) APIF-A, which enabled both parameter independence
analysis and priority calculation, 2) APIF-B, which removed both
parameter independence analysis and priority calculation, 3) APIF-
With-Priority, which removed the implementation of API parame-
ter independence analysis, and 4) APIF-With-Independence, which
removed the implementation of testing priority calculation. The
results are shown in Figure 7. As in previous studies, the testing
payload set was Seclists[13], and the four tests received the same
API communication data.

(a) Vulnerabilities reported by
each variant (TP+FP).

(b) Vulnerabilities reported by
each variant (TP+FP).

Figure 7: Number of vulnerabilities discovered by each tool.

In Figure 7a, compared to the unoptimized APIF-B, APIF-With-
Priority can discover more vulnerabilities within a relatively short
time frame without affecting the effectiveness of vulnerability de-
tection, while the overall fuzzing duration remains nearly the same.
This is because the parameter priority analysis primarily opti-
mizes the testing sequence. In Figure 7b, the curve of APIF-With-
Independence significantly shortens the overall fuzzing duration,
greatly improving efficiency. This improvement is due to the con-
current insertion of multiple payloads in a single request, allowing
more test cases to be completed in a given time. However, due
to incorrect judgments of API parameter independence in some
cases, the number of detected vulnerabilities slightly decreases.
This indicates that there is still room for further optimization of
the parameter independence analysis method.

5.6 Real-World Vulnerability Testing
We applied the implementation of the APIF tool to real-world vul-
nerability testing and discovered 188 bugs and 26 vulnerabilities
across 60 open-source API projects. These vulnerable applications
include open-source applications such as EyouCMS and cloud-
native API gateway services like Apache ShenYu. We reported
these vulnerabilities to the respective service vendors, and 18 of
them have been addressed and publicly disclosed, as shown in Table
3.

5.6.1 Test Environment Setup. During the test setup process, our
goal was to ensure that each testing tool could fully obtain the API
information of the target programs. First, we deployed all target
testing programs in the test environment. Then, by configuring
proxies and manually triggering interactions through Postman, we
captured the communication data required by APIF. Additionally,
we generated corresponding OAS files for each target testing pro-
gram. The payload set for testing uniformly adopted SecLists[13],
and the maximum runtime for a single test target was set to 240
minutes.

5.6.2 Results Comparison. For the vulnerabilities discovered by
APIF, we conducted supplementary tests using three other tools
within the same time limit. The results (as shown in Table 3) indi-
cated that RESTler identified 3 of these vulnerabilities, Fuzzapi dis-
covered 6, and OpenAPI-Fuzzer found 7. This further demonstrates
that the optimizations in APIF effectively enhance the outcomes of
vulnerability fuzzing.

Through comparative experiments and testing in real-world
evaluation, we have validated the effectiveness of APIF. The opti-
mizations implemented in our proposed fuzzing framework and
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Figure 8: Parsing and decoding API request parameters into
the tree structure.

process, including API parameter parsing, testing priority calcu-
lation, and test vector generation optimizations have collectively
enhanced both the coverage and efficiency of API vulnerability
fuzzing.

Listing 3: Request message captured in API communication

POST /apiadmin/notice/add HTTP /1.1

{
"title ": "dGVzdDEyMw ==",
"content ": "PHA+dGVzdDxwPg ==",
...

}

5.7 Case Study: Discovery of CVE-2022-41472
Among the real-world CVE vulnerabilities discovered by APIF, CVE-
2022-41472 [3] was identified as a Cross-site Scripting (XSS) vul-
nerability within a JSON structure. This approach involved several
steps.

5.7.1 API Acquisition. First, we deploy the service under test
within an internal environment and simulate normal traffic flows,
storing the traffic in the form of raw HTTP messages, which are
then sent to APIF for fuzzing. The original request message is shown
in Listing 3. APIF identified API /apiadmin/notice/add, which
title and content parameters in the API request message have
been encoded with base64.

5.7.2 API Parameter Parsing. The captured API traffic was re-
cursively decoded and structurally parsed into a tree structure. In
Figure 8, during the decoding process of parameter values, APIF
identifies that the content parameter contains a segment of HTML
code. Consequently, a corresponding decoded node <p> is added
downstream. Generally, when a program renders HTML code snip-
pets submitted by users, it becomes susceptible to Cross-Site Script-
ing (XSS) vulnerabilities.

5.7.3 Testing Priority Calculation. The system calculated the po-
tential for vulnerabilities in all API endpoints to prioritize high-risk
APIs for testing. It was calculated that /apiadmin/notice/addAPI
had a high priority for vulnerability testing (Table 4).

5.7.4 Testing Vectors Generation. After identifying high-risk APIs,
APIF used constraint solving and independence analysis to select
appropriate payloads from the testing vector library and injected

Table 4: Calucate testing priority for all APIs in the project

Testing Priority API Endpoint Vuln Score

1 /apiadmin/order/check 0.8172
2 /apiadmin/notice/add 0.8106
3 /member/login/company/{id} 0.7852
4 /member/login/personal/{id} 0.7683
5 /apiadmin/help/add 0.7289
... ... ...

Figure 9: Mutate node value with XSS payloads.

them into the content node (Figure 9). Then the tree-structured
data was restored and encoded, generated a testing request, and
sent to the target server.

5.7.5 Vulnerability Verification. After getting a remote API re-
sponse content, the built-in verification rules identified the API
with path /apiadmin/notice/add was vulnerable to XSS attacks
through the title parameter in its JSON body when using the
POST method. Following the automated detection, we manually
reproduced the vulnerability to confirm its existence and reported it
to the relevant vendor. The vendor acknowledged the vulnerability
and provided its CVE-2022-41472 identifier.

6 DISCUSSION AND LIMITATIONS
6.1 API Communication Traffic Analysis
APIF employs passive traffic analysis to parse the parameter struc-
ture of APIs. However, in the experimental process mentioned
above, other tools parsed OpenAPI Specification (OAS) files. To en-
sure the validity of our experimental results, we generated uniform
OAS files for every API in the dataset, ensuring that the control
group tools would not fail to discover vulnerabilities due to missing
API documentation.

In API parameter parsing, traffic analysis and OAS parsing are
complementary methods with their pros and cons. Traffic analy-
sis excels in capturing extensive API context and works for APIs
lacking OAS files, applicable to various API types. Its downside is
needing a man-in-the-middle service to intercept API traffic. OAS
parsing stands out for its simplicity, does not require traffic inter-
ception, and suits RESTful APIs well. However, its effectiveness is
limited when OAS documents are unavailable, necessitating manual
OAS document generation.
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6.2 API Authentication
For online services API, certain functionalities require user authenti-
cation. For instance, a typical scenario might allow a regular user to
access information using the GET method, but only an administra-
tor can modify information using the PUT method. To enhance test
coverage, the API fuzzer needs to comprehend the authentication
mechanisms of different APIs.

In our experiments, we configured valid authentication sessions
for the testing tools and the applications under test, enabling the
fuzzing tools to access content that requires authorization. In API
vulnerability fuzzing, failing to obtain API authentication details
significantly impacts API test coverage. Therefore, we developed
an authentication module for APIF, which can carry various au-
thentication information in testing requests based on predefined
configurations. Users can submit their API access credentials to
APIF through a configuration file. Once APIF recognizes an authen-
tication request, it will automatically carry these credentials for
subsequent testing. However, in real-world scenarios, not all target
applications support long-lasting authentication sessions. In such
cases, testing tools can only perform time-limited security testing
using the short-term sessions they have obtained.

6.3 The Universality of Parameter Priority
Calculation

Before performing parameter priority calculation, we used histor-
ical CVE vulnerabilities as the dataset and validated the metrics
based on TCL-based fuzzing [44]. Drawing on our experience in the
field of API vulnerability mining and the practical characteristics
of black-box API security testing scenarios, we ultimately selected
three of the most representative feature dimensions in security
testing scenarios to calculate the priority. Through experiments,
we successfully demonstrated that this improvement can enhance
the efficiency of API vulnerability fuzzing based on parameter in-
jection, parameter modification, and parameter deletion, thereby
encouraging more subsequent research.

However, API vulnerabilities also include many other categories,
such as logical vulnerabilities. Due to the typically more complex
and highly case-specific testing methods required for such vulnera-
bilities, this work did not address efficiency optimization methods
for these types of vulnerabilities. In future work, we will further
optimize priority-guided methods for different types of vulnerabili-
ties.

7 RELATEDWORK
With the rise of cloud computing, RESTful APIs have seen wide-
spread adoption, spurring research in RESTful API fuzzing. Ed-
douibi et al. proposed an automated testing method that begins by
parsing OpenAPI description files to extract API models from JSON
or YAML files, creating a test model that is then transformed into
executable JUnit code [29]. This method relies on random values to
generate parameters testing payloads.

RESTler [22], open-sourced and proposed by Atlidakis et al. in
2019, marks the first instance of a stateful tool designed to au-
tomatically fuzz cloud services through their RESTful APIs [12].
Following this, the same team integrated a series of security rule
checkers within RESTler [23], enabling the automatic identification

of security vulnerabilities. Furthering this field, Godefroid and asso-
ciates developed a methodology for differential regression testing
specifically for RESTful APIs [31]. This approach utilized RESTler
to create network logs across different versions of specified REST-
ful APIs, facilitating the detection of both service and specification
regressions through the analysis of these logs.

Meanwhile, researchers focusing on fuzzing RESTful APIs have
adopted different methods to optimize the generation of test vectors
to improve test coverage. HsuanFuzz [44] uses the Test Coverage
Levels (TCL) algorithm and grey-boxed feedback analysis to identify
whether mutations and vectors are effective, enabling meaningful
mutations to generate new values. Inspired by this research, we
have simplified the TCL algorithm in the scenario of black-box API
fuzzing, leading to the vulnerability prioritization algorithm.

Additionally, we have taken note of studies that utilize data-
driven methods to optimize the process of API fuzzing. Pythia
[21] incorporates a machine-learning model to determine muta-
tion strategies for different segments of a request. It also employs
code coverage analysis to direct the fuzzing process. Miner [40]
leverages the historical data to guide the sequence construction and
improves the fuzzing request generation. These methods require a
long duration to acquire real API communication traffic for perfect
learning, in order to understand the parameter correlations of APIs
and generate appropriate test vectors. For large-scale fuzzing tasks
with limited time, the rapid vulnerability prioritization algorithm
and parameter correlation analysis algorithm we propose will be
more efficient.

As mentioned above, existing black-box API fuzzing research
mainly focuses on RESTful APIs. Methods for testing other types of
APIs have also been proposed, including fuzzers for GraphQL API
[24, 25, 35, 47], SOAP API [33, 41], and gRPC API [49, 50]. How-
ever, most of these studies start from the perspective of software
robustness, using white-box or gray-box testing methods, and can-
not achieve black-box vulnerability detection like the experimental
objects selected in this article.

The RESTful API fuzzing studies above are contingent on provid-
ing accurate API Specification files by API providers. This reliance
significantly limits the application of these techniques to vulnerabil-
ity testing in various other types of APIs. To address this limitation
and enhance the generalizability and practicality, our research is
based on analyzing the API communication traffic. We employ a
unified tree structure for storing and mutating parameters of differ-
ent API types, making our research applicable to other mainstream
APIs such as SOAP, GraphQL, gRPC, MQTT, etc.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced anAPI vulnerability fuzzing framework.
Our innovative approach employs a tree structure for structural
analysis of API parameters, effectively addressing complex encod-
ing issues and enabling the discovery of deeper API vulnerabilities,
while also improving the generalizability of the framework to cope
with various types of APIs in real-world batch testing scenarios.
Subsequently, we optimized the API vulnerability testing efficiency
by calculating the likelihood of vulnerabilities in individual APIs
for prioritization and analyzing parameter independence within
each API. This allowed embedding multiple test vectors in a single
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request, thereby significantly reducing the number of tests and
improving testing efficiency.

Our experimental results validate the effectiveness of our frame-
work, demonstrating its advantages over existing API testing tech-
nologies in terms of efficiency and capability to uncover more
vulnerabilities in black-box testing. We applied this framework to
real-world vulnerability fuzzing, discovering 188 bugs and 26 vul-
nerabilities, including 6 CVEs and 12 CNVDs in 60 open-sourced
API projects. Overall, our approach can serve as a practical direction
to improve the API vulnerability fuzzing techniques.

Future work will focus on refining the vulnerability likelihood
assessment by incorporating additional factors that correlate to vul-
nerabilities and exploring the interrelations between these factors
to optimize our evaluation methods. Additionally, we will further
improve the parameter independence analysis to achieve more pre-
cise and effective results. These enhancements will further improve
the efficiency of black-box API fuzzing.
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