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Abstract
The rapidly expanding landscape of attack vectors on cyber-physical
systems (CPS) has led to the proposal of various attack detection
methods for this area. Most approaches focus on analyzing time
series of data from physical processes. However, the availability of
such well-prepared data is not guaranteed in most infrastructures.
In contrast, relatively few approaches address the direct analysis of
network traffic, which is the natural basis for interaction between
CPS devices. In this paper, we examine traffic-based methods using
data flows, packets, and packet sequences as monitoring base. We
include the packet payload in the analysis in a protocol-agnostic
manner. This offers the possibility to apply the approach in different
networks independently of the used CPS technologies or processes.
We use one-class machine learning methods applied on only normal
traffic in the training phase. This allows us to configure the detec-
tion capabilities independently of attack knowledge or given attack
examples. Besides the evaluation regarding detection capability and
efficiency, we further examine the potential of the protocol-agnostic
models for a transfer on foreign detection scenarios.

CCS Concepts
• Security and privacy → Intrusion detection systems; • Net-
works → Cyber-physical networks; • Computing methodolo-
gies → Machine learning.
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1 MOTIVATION
As the backbone of many critical infrastructures, cyber-physical
systems (CPS) have come into focus as a potential attack target [54].
Therefore, identifying malicious activities on these networks, which
mainly rely on operational technologies (OT)1 to control complex
physical processes, is an issue of paramount importance. As a
result, various detection approaches focusing on OT have been
proposed [95, 96]. The vast majority of methods presented so far
assumes that time-series of data from the OT processes, such as
sensor and actuator states, are available for the analysis [96]. These
approaches rely on the existence of well-structured input datasets
that have already been preprocessed regarding operational events
by an external system. This expectation, however, is not fulfilled in
most real-world networks.2 The previously rarely pursued alterna-
tive, the direct analysis of network traffic, has several advantages.
These are ➊ detecting anomalous communication activity before
the impact on OT processes becomes visible, ➋ the independence
of any external information sources apart from network traffic, ➌
no instance (and potential point of failure or corruption) between
network activities (carrying also process activities) and the detec-
tion system, so that ➍ it can potentially be applied to various OT
networks. Existing traffic-based systems though suffer from at least
one of the three following disadvantages. They use algorithms that
rely on all classes including malicious traffic for the configuration
of the detection, thus neglecting permanently changing attack vari-
ants to evade identification. Either the approach or the evaluation
scenario do not allow conclusions about the applicability to a larger
number of (OT) networks [42]. This applies to all approaches that
are based on protocol knowledge or are only evaluated on traffic
dominated by a specific OT protocol. In addition, the evaluation is
limited to the set of correctly identified input instances, while the
question remains whether the detection pipeline, which is complex
in many cases, can keep up with the given input rates.

Contribution. In this paper, we propose a traffic-based detection
approach that overcomes these limitations. It is based on require-
ments that we have previously identified by analyzing OT traffic
characteristics [76]. Our goal is to create a method with maximum
local and global effectiveness that analyzes all network traffic with-
out protocol or port filtering and is applicable to any OT network.

1In the following we use the term OT as synonym for CPS or ICS (Industrial Control
System) because cyber is no well-defined term and not every control process has an
industrial purpose.
2This is one of our fundamental findings from years of work in the field, for which no
public sources exist to date.
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• We present a flexible packet parsing that allows the packet
payload to be incorporated in the detection analysis with-
out knowledge of the underlying protocol stack. It can be
applied to any OT (or even non-OT) traffic, either based on
IP-protocols or on those directly transmitted over Ethernet.

• We propose a protocol-agnostic anomaly detection approach
which, unlike previous approaches, can be applied with-
out making any assumptions regarding the OT network’s
characteristics, e.g., about the dominance of an OT protocol.
We demonstrate this by applying the proposed protocol-
independent anomaly detection method to four public OT
datasets and show that it achieves the same or better results
for which multiple protocol-specific and/or more complex
methods were required previously.

• We explore a potential that arises through the protocol-
agnostic traffic analysis: We examine the feasibility of trans-
fer learning in the area of OT attack detection by using mod-
els trained on traffic in one OT network for the detection in
foreign networks.

• To move beyond the academic context to real-world appli-
cation, as recommended [4, 83], we also perform all experi-
ments on traffic traces taken from three productive critical
OT infrastructures.

The remainder of the paper is organized as follows. In Section 2,
we reason design decisions for the detection and, based on prior
research, derive open questions. Next, in Section 3, the traffic per-
spectives and algorithms are disussed that were investigated for the
protocol-agnostic detection. After introducing the datasets used for
evaluation in Section 4, we present and discuss the results achieved
in Section 5. We conclude the paper in Section 6 by a summary of
the main takeaways.

2 PROBLEM AND OPEN QUESTIONS
Starting with a brief summary of the conditions in OT networks, we
reason the requirements for effective attack detection. To implement
such a detection, we need to address a number of questions that
have not been answered in previous studies, yet.

2.1 OT Networks in a Minimal Nutshell
OT networks are used widely. They form the backbone of most crit-
ical infrastructures, such as the energy and water supply, why they
have to meet highest requirements regarding availability and relia-
bility. They typically operate 24/7. The options for setup changes
needed to integrate new features or conduct experiments are ex-
tremely limited. The networks are relatively heterogeneous in terms
of the physical processes implemented and the devices used. The
interaction is often based on proprietary, non-standardized commu-
nications [84]. Many devices have been developed with the sole aim
of performing a specific control task in an expected setup lacking
fault tolerance, built-in security, and flexibility for new network
conditions [6, 84]. These are also the reasons why these networks
are currently only protected from the outside world, if at all, us-
ing firewalls. There is no internal security monitoring, which is
overdue, especially given the importance of critical infrastructures,
in creating multi-level security. An internal attack detection must
take all these factors into account.

2.2 Requirement-driven Detection Design
The effectiveness of a detection approach lies in the ability to cor-
rectly identify both normal and anomalous activity. Two aspects
are important here: Firstly, all network events that can indicate
attacks should be incorporated. We refer to this as the detection’s
local effectiveness. Secondly, an effective detection approach should
further be created in such a way that it can be used without any
information or assumptions about the network, i.e., to be applicable
to as many infrastructures as possible, what we call global effective-
ness. If a method is to be applicable in real time, its effectiveness is
also influenced by the efficiency of the algorithms. If an approach
is designed for maximum effectiveness, but is not fast enough to
capture all activity, not all events can be analyzed. They have to
be dropped, leading to blindness of the method regarding these
activities. Therefore, our approach pursues all three goals.

Anomaly detection without attack(er) knowledge. There
are two basic paradigms for attack detection: Misuse detection by
using attack signatures as detection base and anomaly detection as
orthogonal approach based on a definition of normal activities [7,
40, 83]3. Numerous works [2, 3, 9, 32, 34, 91, 98] misleadingly refer
to anomaly detection when they actually implement a third type
by using all classes (normal and anomalous activities) for setting
up the detection [40]. Systems that depend on malicious activity
for configuration have significant drawbacks. ➊ They are always
biased (or even overfitted) by the provided attack knowledge and
are thus blind against other types. ➋ They cannot detect new (zero-
day) attacks which is crucial with the attack landscape’s dynamics
nowadays. ➌ They further cannot be applied if malicious activity
is not available at all. For OT networks, only few realistic attack
activities have been recorded yet [6], especially in terms of their
diverse nature. Usually they also cannot be generated under realistic
conditions due to the aforementioned operational contraints. For
this reason, anomaly detection, i.e., identifying attacks as deviations
from normality, is the only practicable scheme here. At the same
time, detecting attacks based on knowledge derived only from the
class of normal traffic is more challenging than including anomalies
as a second class during training [7, 40].

Traffic as input instead of process data. The research on OT
attack detection can be divided into process-based approaches that
analyze preprocessed data from control processes and communication-
based ones taking network traffic as input. Process-based schemes
dominate the field [42, 95, 96], although they come with a number
of serious issues (cf. Appendix A.1 for a more extensive argumen-
tation). ➊ They mostly perform comparatively simple checks [95],
which are since decades a built-in functionality of the already estab-
lished monitoring necessary to run the control process(es), without
measuring the benefit of the new detection on top. ➋ They expect
a historian, i.e., a time-series OT database with a large amount of
well-structured and collected process data as working base, which
is neither available in most networks (cf. Footnote 2) nor can be
established by the operators due to stringent warranty restrictions
from system vendors. ➌ In the lack of standards for logging process
data (e.g., format and granularity), this reliance on preprocessed
data means that a process-based solution built for one network is
typically not transferable to other networks. ➍ They monitor log

3The terms signature-based and anomaly-based refer to the same differentiation.
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files (or databases) of activities reported by the OT devices and
therefore can only detect what already has caused anomalies (and
potential damage) at the process level. Consequently, we advocate
communication- or traffic-based approaches, respectively, in the
following, whose advantages were already mentioned in Section 1.

Modeling normality bymachine learning rather than rules
or state machines. For the definition of normality, which is nec-
essary for anomaly detection, rules, state machines, and models
built using machine learning are conceivable. Although activi-
ties in OT are considered comparatively homogeneous (or reg-
ular) [13, 24, 40, 55, 96], activities are still too variable to model
normality sufficiently by rules or state machines [76]. This may be
feasible for a single OT application [11, 12, 24, 29] or for certain traf-
fic aspects [66], but with a rising amount of monitored applications
or traffic data, the two approaches suffer from rule or state explo-
sion with negative effects on practicability and efficiency. One-class
machine learning algorithms, in contrast, are designed to extract
the properties relevant to represent a class from highly variable
input data, which is why we prefer them for modeling normal net-
work traffic. Unlike rules and state machines they are black boxes,
but can be post-explained by explanation algorithms [36, 50]. We
weight efficiency over transparency here, as a transparent model is
of no use if it cannot efficiently solve the detection task.

Complete traffic analysis in a protocol-agnosticmanner. For
maximum global effectiveness, the detection process should be ap-
plicable without prior knowledge about the used OT (and non-OT)
protocols, the deployed OT devices, or any other traffic charac-
teristics. For maximum local effectiveness the whole traffic, i.e.,
every flow and Ethernet frame, is presented to the detector without
filtering for certain criteria, such as OT protocols or specific ports.
This meets the facts that ➊ OT communication is often realized by
several (OT) protocols instead of a single dominant one [53, 76],
➋ is mixed with very different amounts of communication using
standard information technology (IT) protocols [53, 76], and ➌ this
standard IT communication can also be a target of attacks to dam-
age the OT network. From each Ethernet frame, which we refer
to as packet in the following, the content of the highest network
layer available is incorporated as undecoded byte sequence in the
analysis. Thus, also sophisticated attacks on the payload’s process
data can be detected.

2.3 Current State of Traffic-based Detection
Schemes for OT

We summarize prior research in the field using the collection of [96]
supplemented by eight further approaches recently published at
top security venues [8, 10, 25, 52, 74, 86, 89, 97].

Specific approaches. There are eight approaches using benign
and malicious traffic and 19 tackling the greater challenge of using
only one class [7, 40], the normal traffic, to set up the detector. There
is no approach that applies more than one perspective for monitor-
ing the network traffic (flows, single packets, or packet sequences)
which limits the range of detectable attacks from the outset (cf.
Section 3.1). We present a closer look at the detection methods in
Table 1, which reveals that only five one-class approaches were
evaluated on public datasets which is necessary to relate the results

to previous and new approaches. Moreover, only five of the 19 ap-
proaches were evaluated on heterogenous traffic traces (#public4
and #real datasets) with different OT protocols (#OT protocols). Con-
sequently, the local and especially global effectiveness, motivated in
Section 2.2 including the transferability of the approaches to other
OT networks, was not evaluated either. In fact, so far only one ap-
proach [8] aims to analyze packet payloads in a protocol-agnostic
manner, as we do. In addition, many works lack an evaluation
whether the detection is sufficiently efficient for data rates encoun-
tered in OT networks. Especially for for packet-wise analyses, an
evaluation of the processing speed (efficiency) should prove the
suitability for real-world networks. So far, however, only three of 14
one-class approaches (partly) discuss this issue (speed evaluation).
Finally, only for a single one-class approach [24] the implemen-
tation is published to share the results and efforts made with the
intrusion detection community.

Protocol-agnostic reuse of existing approaches. In [96], it
has been proposed to decouple existing approaches from domain-
specific OT protocols to use them outside of their restricted initial
design. We fully share the motivation and appreciate the work.
Strength of the work is to create a base for offline comparisons
and reevaluations of approaches scientifically. Unfortunately, it
cannot help to design a performant system for the real world. The
overhead using the method is only very briefly discussed. It is es-
timated by 10% for a single approach [24], assessed as the most
complex one [96], without providing a nominal analysis rate that
could be related to traffic rates in real networks as identified previ-
ously [53] and in Section 4.3. A second major hurdle for practical
use is the effort necessary to integrate new abstractions to support
a further protocol. This seems reasonable given the assumption
that networks are usually dominated by one or two OT protocols.
Unfortunately, this expectation persists, although it is not true, as
shown previously [53] and observable in our real-live captures [76].

Novelty of our work. Unfortunately, the only existing protocol-
agnostic approach so far [8] has several clear drawbacks. It relies on
the construction of hidden semi-Markov models, Gaussian mixture
models, and probalistic suffix trees for the detection. The com-
putational complexity is given as quadratic to the states of the
Markov models and the size of the suffix tree’s range. We present
our approach because we consider it desirable to use at most one of
already highly advanced algorithmswith high efficiency rather than
a combination of three complex methods with limited performance.
Additionaly, the results cannot be verfied or used5 in order to create
a practicable method for the requirements of OT networks stated
in 2.2. In contrast, we are the first to provide a protocol-agnostic
approach including material for comparative analyses and source
code for further developments.

2.4 Open Questions
Our goal is to develop a traffic-based anomaly detection approach
with maximum local and global effectiveness without any informa-
tion or assumptions about the network. We break the evaluation of
feasibility down to the following questions.

4We use # as shorter form for number of.
5The implementation is not available.
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Table 1: Traffic-based works with evaluation characteristics indicating local (# OT protocols) and global effectiveness (# datasets).
Two-class approaches use benign and malicious traffic for configuration, one-class approaches only rely on normal traffic.

two-class approaches one-class approaches

[69] [80] [25] [86] [67] [3] [14] [70] [90] [5] [29] [99] [11] [12] [89] [10] [48] [23] [52] [24] [46] [100] [74] [97] [47] [51] [8] here

flows ● ● ● ● ● ● ● ● ● ●
single packets ● ● ● ● ● ● ● ● ● ●

packet sequence ● ● ● ● ● ● ● ● ● ●

# public datasets 1 16 1 1 17 1 1 2 3 4
# real datasets 1 1 1 1 3 1 2 1 1 1 9 2 1 3
# OT protocols 1 1 1 2 1 2 1 1 1 x8 1 1 1 1 2 1 3 1 1 1 1 1 2 6 1 1 3 4+

protocol-agnostic ● ●

speed evaluation ● ● ● ● ● ● ● ● ●
public material ● ◗ ● ◗ ●

Legend: ●: matching characteristic; ◗: partly available

Q1: Can the protocol-agnostic approach cope with previ-
ous, more individual approaches? In order to determine which
detection success can be achieved by a protocol-agnostic approach,
we model packet payloads as byte sequences without effort to
decode [10, 89] or reverse-engineer payload contents [38]. We eval-
uate this approach using four public datasets with well-labeled
validation traffic. For each dataset, we evaluate the local effective-
ness (results per dataset) of the protocol-agnostic detection and
compare it with all previous results achieved on that dataset. Since
the datasets include four OT protocols, we conclude to the global
effectiveness, i.e., the general applicability to OT networks.

Q2: Is the approach sufficiently efficient to cope with net-
works’ data rates? As argued in Section 2.2, effectiveness also
relies on efficiency. In our approach the analysis of every packet of
the whole, unfiltered network traffic combined with machine learn-
ing on packet payloads represents a non-negligible effort. Although
an OT protocols’ payload is not interpreted, the packet is partly
decoded to extract general transport information. We measure if
such a detection design is feasible or traffic has to be dropped with
negative impact on effectiveness (due to blindness regarding the
dropped traffic). Here, the processing times for each step of the
training and detection pipeline are collected and correlated to the
packet rates of each analyzed dataset. Since network traffic from
real OT sites with different process purpose are part of the eval-
uation, the results also allow conclusions on the feasibility of the
approach for traffic volumes in real OT networks. Apart from previ-
ous results for a byte-mapping approach [74] that focused only on
packet parsing times, such a comprehensive analysis has neither
been done before nor with the inclusion of several real OT datasets.

Q3: What is the potential of transfer learning for anom-
aly detection in OT traffic? The protocol- and process-agnostic
nature of the detection approach opens new possibilities to use
detection models even more effectively among several networks.
Hence, to evaluate the global effectiveness of the method, we go a
step further and investigate its potential regarding transfer learn-
ing [88]. Transfer learning in OT networks has the advantage of
knowledge exchange between infrastructures by reusing already
trained models of normality in other infrastuctures. This could help
to decrease false-alarm rates, an inherent problem of anomaly de-
tection, and to shorten training times required for each deployment.
It can be implemented in different ways using pre-training on one
dataset and application of the resulting model on other data, or

using self-learning methods which train the model on the target
data supplemented by knowledge from a foreign setup [101]. In
this paper, we examine to what extent models trained on a dataset
can be used for detection on traffic from another dataset and how
this is affected by the same or another protocol mix.

Q4: How do different types of traffic perspectives affect
the effectiveness and efficiency of learning-based anomaly
detectors? Network traffic can be prepared for monitoring in var-
ious ways. Additionally, there are several options of algorithms
usable for one-class training of the detector. We are therefore con-
ducting a series of experiments with three kinds of traffic mappings
and four machine learning algorithms. We aim to find out whether
there are certain suitable settings that perform well independent
of the respective network (here: among the datasets). This allows
the numerous possibilities for future improvements to be narrowed
down to the most promising setups.

3 TECHNICAL REALIZATION
The design of the detection method presented here is based on
requirements for attack detection procedures given by operators of
round-the-clock energy supply networks. Table 2 summarizes the
requirements with the associated design and deployment decision.

Table 2: Operational requirements with design decisions for
a convenient and widespread deployment.

operational requirement design and deployment decision

no host changes → network traffic as input
no (or minimal) network changes → switch mirror port as input source
no interaction with the network → passive operation

independence from OT technology → protocol-agnostic procedure
independence from physical processes → process data not incorporated

self-adjustment → use of machine learning
no availability of attack examples → one-class training of the detector

The method was therefore created for the following scenario. It
is placed on dedicated hardware connected to the mirror port of a
switch in an OT network. The entire traffic is continuously analyzed
and relevant data for identifying attacks is extracted from every
6This work was evaluated on two datasets but one [37] is not accessible anymore.
7This work was evaluated on the infrastructure of SWaT [28] but the traffic used is
not public.
8The protocol(s) are not named.
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flow and packet. This information is continuously conversed into
instances (samples) of a meaningful and efficient format, which are
used to model the detection knowledge using machine learning in a
training phase. The knowledge is afterwards used in the detection
phase to differentiate benign from malicious communication.

3.1 Feature Parsing and Sample Creation
There are two traditional perspectives on network traffic, in partic-
ular for intrusion detection. We consider both because they differ
in their strengths and weaknesses.

Flow perspective. The analysis of network flows, defined as
a sequence of packets sharing five attributes9, focuses on quan-
titative traffic characteristics. The investigation is limited to the
meta attributes of the packets, which allows for very efficient mon-
itoring. The volume-based analysis of traffic characteristics further
enables the detection of load-based attacks (Denial-of-Service at-
tacks), which are hardly detectable by per-packet analyses. On the
other hand, false-data injection attacks cannot be detected without
evaluating packet contents. We assign 33 flow features to each
flow sample reflecting common flow properties for quantifying
and characterizing network flows [94]. They have emerged in the
past in conjunction with flow export standards (sFlow [68], Net-
Flow [15], or IPFIX [16]) and have proven to be useful for attack
detection (cf. works operating on flows in Table 1). They consist of
eleven parameters measured in three ways, i.e., per (bidirectional)
flow, forward, and backward direction: duration in milliseconds,
number of packets, number of bytes, minimum, mean, and maximum
packet size, standard deviation of the packet size, minimum, mean,
and maximum packet inter-arrival time, and the standard deviation
of the packet inter-arrival time in milliseconds. Although this im-
plies redundancy, we do not want to predetermine (and limit) which
aspects might be particularly suitable for modeling normal traffic.

Packet perspective. The limitations of flow analysis require
packet analysis. We apply deep packet inspection (DPI) to each
Ethernet frame to extract meta data and payload prefixes. The meta
data include source and destination MAC addresses, packet size, num-
ber of packet layers, EtherType, payload size, and a hash value of the
payload. We consider MAC addresses in the modeling because oth-
erwise all packets of the traffic would be presented to the machine
learning algorithms without a criterion to distinguish communi-
cation relationship. When providing them, the algorithm can still
decide to what extent the addresses are relevant for modeling the
traffic. From the payload itself, a fixed-length prefix of 57 bytes is
extracted and used for detection without decoding. If the payload
is shorter the vector positions that are not required are set to zero.
The length of the payload results from the target total length of the
packet samples of 64 minimized by the length for the seven meta
data features. We consider the sample size of 64 to be a good trade-
off to model meta data and a representative part of the payload with
a limited probability of sparse zero-filled samples. In addition, it is
square and can be transferred to samples of quadratic dimension,
which is useful as potential input for autoencoder structures. The
hash value of the payload complements the byte-wise payload fea-
tures in two ways. First, it represents an efficient characterization

9These are source and destination IP addresses, IP protocol (number), source and
destination ports.

of the complete packet payload beyond the considered prefix. In
addition, it expresses the payload in a single feature. This allows
us to differentiate the complete payloads, whereas the 57 byte fea-
tures are necessary to finer model and evaluate single payload byte
positions. The features of packet samples and the reasons for their
choice are summarized in Table 3. Packet-based analysis enables
a very precise monitoring of the data traffic, which in turn usu-
ally involves considerable effort for packet decoding. This can be
challenging, potentially a bottleneck at high packet rates. To detect
Man-in-the-Middle attacks [64, 65] or the manipulation of process
data encapsulated in packets [26], such an analysis is necessary.

Table 3: Features in packet samples with reason for choice.

feature(s) reason

source MAC address
destination MAC address

}
reflect the corresponding
communication relation

packet size
number of packet layers

EtherType

 reflect the structure of the packet

payload size
}

reflects the amount of the highest-layer
payload within the packet structure

payload hash value
first 57 payload byte values

characterizes the whole payload
byte-wise reflection of the payload prefix

Packet sequence samples. In addition to observing flows and
individual packets, sequences of packets are also essential for detect-
ing attacks. By observing them, further deviations in the communi-
cation flow can be detected that are neither characterized by chang-
ing load or communication partners (evident in flow characteristics)
nor by unusual packet data (recognizable in the individual packet
analysis). These are (stealthy) replay attacks, Denial-of-Service and
Man-in-the-Middle attacks [64, 65] in which the attacker injects
packets using the address of a legitimate communication partner.
A sequence length of three packets represents the minimal context
of a packet, i.e., the previous and next packet in the traffic capture.
Using longer sequence lengths for training and detection may lead
to the modeling of less important relationships and thus to noise
in the learning and decision process. Furthermore, the degree of
redundant information and the number of different samples in-
creases. We analyzed the latter and found that in the case of the
seven datasets, the diversity of the samples increases by 19-43%
from 3- to 5-grams. Higher diversity of inputs also means higher
complexity of the models, such as larger tree structures to represent
all inputs when using Isolation Forest, with negative impact on ef-
ficiency for the training and detection phase. We therefore decided
to work with 3-packet samples. They are created by applying a
sliding window to the observed sequence of packets. Here, 14 bytes
of payload are extracted to form 63-dimensional vectors that reflect
the same seven features (3 × (7 + 14) = 63) as the single-packet
samples, in addition to the packet payload.

Support of proprietary and non-IP-based protocols. Sup-
port for potentially all OT protocols in the monitored network is
ensured by two properties of the protocol-agnostic parsing process
that address two challenges in monitoring OT communications:
Firstly, certain OT protocols, such as Profinet or GOOSE, can be
applied without the use of the IP protocol. A flexible payload ex-
traction method was implemented to support such protocols. As
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Figure 1: Packet parsing on different OT protocol stacks:
Data beyond known transport layers is considered as payload
(blue), from which a fixed byte number (bold) is analyzed.

Table 4: Selected one-class algorithms with reason for choice.

modeling idea reason

Elliptic Envelope algorithm [73, 77] covariance-based fast detection
One-class SupportVectorMachine [75, 79] kernel-based modeling structural data

Isolation Forest algorithm [49, 78] tree-based modeling statistical data
Convolutional Autoencoder [30, 85] neural network inherent feature extraction,

ability to model any function

depicted in Figure 1, the developed parser analyzes each Ethernet
frame seen on the network layer by layer and takes the data field
of the highest available layer as payload. Secondly, in addition to
using well-known protocols, there are countless process implemen-
tations that use proprietary protocols. To be able to incorporate the
payload transmitted by these protocols it is taken as a sequence of
bytes from which a prefix is used during detection.

3.2 One-class-based Detector Modeling
The goal is to create a system that derives its configuration solely
by observing normal traffic from the network it is attached to, as
reasoned in Section 2.2. Therefore, only machine learning based on
one class is relevant here. We do not only examine one algorithm,
but several to compare results between different types of algorithm
for the following reasons: ➊ In general, one cannot infer a partic-
ularly suitable machine learning algorithm from a given problem.
➋ We do not want to unnecessarily limit the possibilities for good
detection results from the outset. Since the algorithms differ in
the underlying concepts, different results must be expected for the
same input. ➌ Comparisons across multiple algorithms can provide
researchers with a rationale for future detection decisions. From
previous experiments, we selected four algorithms, each based on a
different modeling idea, as still debatable number. These are Elliptic
Envelope algorithm (envelope), One-class Support VectorMachine
(OCSVM), Isolation Forest algorithm (iforest), and Convolutional
Autoencoder (CAE). They are summarized in Table 4. Further infor-
mation regarding the algorithms and investigated hyperparameter
space for model creation can be found in Section A.2 in the appendix.
The algorithms have not been altered in order to use them.

4 TRAFFIC DATASETS FOR EVALUATION
The selection of the datasets is affected by our research goals: ➊ To
assess the protocol independence, a representative number of differ-
ent OT protocols must be included.➋ For a serious evaluation of the
detection capability, a groundtruth defined by a third party (here
the authors of the public datasets) is required. Network traffic needs

to be labeled at the packet level to precisely distinguish normal and
anomalous activity, which excludes many public datasets. ➌ To
assess the suitability of the approach for real data rates, we include
traffic captured from real OT networks. Consequently, we use traffic
from public testbeds and real infrastructures. Public datasets serve
as a reference point for comparing our results with past and future
approaches. Traffic from real infrastructures permits us to relate
the results to real-world conditions.

4.1 Public Datasets
Several public OT datasets are available [17]. In keeping with our
focus on traffic-based detection schemes, we examined the datasets
regarding usability for a sufficient evaluation of such systems. This
includes ➊ the availability of unpreprocessed (raw) network traffic,
➋ the presence of anomalous traffic in addition to normal one, and
➌ a labeling of these anomalies with sufficient granularity, i.e.,
on packet level. We found four datasets that meet these criteria
(see Table 12 in the appendix). They include four OT protocols:
Modbus/TCP, DNP3, GOOSE, and S7comm.

Lemay dataset. The captures of Lemay and Fernandez [43, 44]
were collected from a simulation of a power grid control system
using the protocol Modbus/TPC. From the six normal capture files
we use the one referred to as Run1_6RTU because it was taken
from a setting that incorporates six remote terminal units (RTUs),
for which also the attack traffic was generated. We consider this as
relevant normal traffic for training because one would also place,
train, and apply a detector in an identical network setup in a real
scenario. All five parts available were used as validation traffic,
whereas the labeling of the largest one10 with a packet share of
about 40% was corrected in March 2023 (after we identified and
reported an apparently wrong labeling to the authors). Before it
could not or only erroneously be applied for evaluations. The mali-
cious activities consist of command and control, penetration attack,
and covert channel attack traffic.

Water distribution testbed (WDT) dataset. This dataset also
contains Modbus/TCP and origins from a testbed that emulates
a water distribution process by connecting a real subsystem to a
simulated one using hardware-in-the-loop technology [22, 31]. The
process implements the water flow among eight tanks using four
programmable logic controllers (PLCs), valves, pumps, pressure,
and flow sensors.

DNP3 dataset. These traces from the Queensland University
of Technology of Brisbane (QUT) [62, 71] come from a testbed of
energy transmission stations using the protocols DNP3 and GOOSE.
The malicious activities are reconnaissance actions, data injection,
masquerading, packet flooding, Man-in-the-Middle communication,
and packet replay.

S7comm dataset. This dataset, also published by QUT, [63, 72]
is from a testbed emulating a subprocess of a mining refinery based
on communications using the S7comm protocol. The attacks ma-
nipulate the process through respective messages, e.g., switching
on and off the conveyor belts or water tanks either by targeted mes-
sages or even by flooding of the corresponding process commands.

10characterization_modbus_6RTU_with_operate_labeled.csv
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4.2 Real Datasets
In addition, we used three datasets from real OT networks. The
traces were recorded in January 2023 in three different networks
of a productive coal-fired power generation infrastructure, which
belongs to the class of 500 MW units. For each capture, the tool
tcpdump11 was installed on a separate device and attached to a
central switch of the respective networks with activated port mir-
roring12. The infrastructure is protected by a demilitarized zone
(DMZ) and consists of several plants. Each plant controls a high
number of subprocesses, such as the production of steam, for the
overall power generation process. Figure 2 shows the three capture
points. All three traces were recorded in parallel during normal
plant operation. As these networks are subject to the conditions
described in 2.1, no anomalies could be generated.

Figure 2: Real infrastructure with three capture points.

DMZ dataset. This trace was captured at infrastructure level in
the DMZ of the power generation site. As perimeter network to the
infrastructure, it has the highest load of all three traces regarding
flow and packet rate. It possesses the highest number of communi-
cation devices and the most diverse protocol mix, including a lot of
standard IT protocols.

Plant control dataset. This capture reflects OT traffic at plant
level. It was taken from the network at that point where the data
streams of all generation sub-networks are combined and prepared
for the process monitoring. This includes routines for automatic
control of process interactions and for providing all relevant events
and process states to the visualization in the plant’s control room.
The trace also includes various protocols used in standard IT com-
munications rather than exposing specific prevailing OT protocols.

Steam production dataset. A subprocess of the power genera-
tion is the steam production to operate a turbine. The third trace is
taken from the network controlling this process. In the subnetwork
41 devices interact as part of the steam control system to regulate
and optimize the firing of several steam generators. The steam is
then fed into a turbine to generate electricity. The dominant OT
protocol is Modbus/TCP.

4.3 Characteristics and Labeling
Dataset characteristics. Each public dataset consists of a part
with only normal traffic for training the detector and a part with
11www.tcpdump.org
12High security regulations of this critical infrastructure do not allow us to publish
the traffic traces due to non-disclosure agreements.

mixed traffic for validating it afterwards. The three real datasets
contain only normal traffic. The training part precedes the val-
idation part. The characteristics of all parts are summarized in
Table 5. From each part, flow and packet samples were derived
according to the steps presented in Section 3. The numbers of
the samples extracted during the training and validation periods
correspond to the flow and packet numbers given in the table.
Additional facts about the involved OT protocols and three of
the four public datasets can be found in [17].

From packet labels to flow labels. Each packet of the public
datasets was labeled by the authors as normal or malicous. To also
examine the feasibility of applying our detection method to flows,
a respective labeling of flows as groundtruth was required. For
this, we derived flow labels from the packet label files by defining
each flow as anomalous if the data contained an anomalous packet
related to this flow.

Use of real datasets without anomalies. We considered a
subsequent integration of artificial anomalies into the captured real
datasets. We decided against it because any choice and implemen-
tation of attacks is subjective and can be criticized, and results on
artificial anomalies can only be used to a very limited extent to
infer the detection capability in the origin network. In contrast, the
anomalous traffic of the public datasets was generated by other
scientists in the respective network setup.

5 EXPERIMENTS AND RESULTS
The approach is evaluated on the network traffic of the seven in-
troduced datasets. We first explain the design of the experiments,
the measured criteria, and the identification of the investigated de-
tection models. Then we answer the four initially stated questions
regarding effectivity, efficiency, the potential of model transfer, and
the effects of different traffic perspectives on the anomaly detection.
We present the results and compare them with previous detection
approaches where applicable.

5.1 Experimental Procedure
The design of the experiments was driven by two objectives. Firstly,
the training procedure and measurements should be as close as
possible to the intended application scenario. Secondly, the evalua-
tion should be free from common pitfalls identified in evaluations
of learning-based security systems [4]. Hence, the following pro-
cedure was applied for each constellation of traffic mapping and
machine learning algorithm.

Step 1: Training phase. The model was trained on the entire
traffic designated for training by presenting all training samples, i.e.,
flow samples, packet samples, or 3-packet samples, to the machine
learning algorithm.

Step 2: Detection phase on training traffic. Then, the train-
ing set itself was presented to the trained detector. We did not
split the training traffic to potentially shuffle it and to calculate
cross-validation rates. Although common practice, this would be
inconsistent with the introduced application scenario consisting of
a designated training and consecutive detection phase for traffic
with a given temporal order. In addition to correctly classifying
new traffic, the detector should also recognize as much traffic as
possible from the training phase as normal. Therefore, we tested
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Table 5: Dataset characteristics and number of validation samples: For labeled data normal and anomalous ones, and for real
data the total number (total) and the number of samples that are not present in the training set (new in valid.) are stated.

public testbed or simulation data traffic from real infrastructure

Lemay WDT DNP3 S7comm DMZ plant control steam production
OT protocol(s) Modbus/TCP Modbus/TCP DNP3, GOOSE S7comm none none Modbus/TCP

characteristics of training and validation sets

training validation training validation training validation training validation training validation training validation training validation

duration (hh:mm:ss) 00:59:17 00:21:40 00:57:03 01:36:04 24:01:25 23:59:59 08:18:56 09:00:25 00:59:49 00:59:49 00:59:50 00:59:51 00:57:12 00:57:22
duration (s) 3,557 1,300 3,423 5,764 86,485 86,399 29,936 32,425 3,589 3,589 3,590 3,591 3,432 3,442

# flows 13,626 2,455 17,989 46,234 558 624 235 272 20,338 19,452 4,209 4,138 82,305 81,925
# packets 134,690 30,063 7,757,289 16,549,425 422,200 1,567,529 421,080 1,802,757 5,147,077 5,106,618 145,647 145,322 602,404 600,692

# bytes (103) 15,017 2,909 506,750 5,242,365 57,611 127,081 57,809 173,836 1,522,958 1,539,162 21,999 22,095 46,687 46,622
�packet size 111 97 65 317 136 81 137 96 296 301 151 152 78 78
# flows / sec 4 2 5 8 0.01 0.01 0.01 0.01 6 5 1 1 24 24
# pkts / sec 38 23 2266 2871 5 18 14 56 1434 1423 41 40 176 175

# bytes / sec (103) 4 2 148 910 1 1 2 5 424 429 6 6 14 14
# MAC addresses 17 9 7 9 9 13 8 13 58 55 33 33 41 40

breakdown of the validation set

normal anomalous normal anomalous normal anomalous normal anomalous total new in valid. total new in valid. total new in valid.

# flow samples 2,435 20 22,867 23,367 601 23 251 21 19,452 7,092 4,138 2,937 81,925 61,496
# packet samples 21,939 8,124 9,851,133 6,698,292 1,556,112 11,417 1,137,294 665,463 5,106,618 3,239,591 145,322 39,431 600,692 26,469

# 3-packet samples 21,802 8,259 9,850,523 6,698,900 1,544,883 22,644 438,013 1,364,742 5,106,616 3,810,640 145,320 127,735 600,690 182,760

the detector on the training set, determined the number of correctly
classified normal samples as true negatives (TN) and the false alarms
as false positives (FP). We derived the training accuracy13 as:

𝑡𝑎𝑐𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Step 3: Detection phase on validation traffic. Finally, the
validation set was presented to the trained detector. In the case of
the public datasets, this part contains normal and anomalous traffic.
For each sample, the decision was compared with the actual label
of the sample. Besides the TN and FP from the normal samples, the
number of correctly identified and undetected malicious samples
were determined from the anomalous samples as true positives (TP)
and false negatives (FN). From this, we calculated the balanced
accuracy as measure on the validation set, which normalizes the
imbalance between normal and anomalous sample sets:

𝑣𝑎𝑐𝑐 =
1
2

(
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
+ 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

)
To have a single measure that expresses the same importance to

the potential re-recognition of the training set as to the detection
capability in the monitoring phase, we combine the two measures
by equally weighting them:

𝑏𝑎𝑐𝑐 =
𝑡𝑎𝑐𝑐 + 𝑣𝑎𝑐𝑐

2
The validation part of the real datasets only contains normal

traffic. Here, the adaptions 𝑣𝑎𝑐𝑐− and 𝑏𝑎𝑐𝑐− are defined by:

𝑣𝑎𝑐𝑐− =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, 𝑏𝑎𝑐𝑐− =

𝑡𝑎𝑐𝑐 + 𝑣𝑎𝑐𝑐−

2
Model identification. We performed the protocol-agnostic

modeling of normal traffic as detection base by the conversion
of network traffic to samples as explained in Section 3.1 for each

13Accuracy measures are used because the measures precision, recall, and consequently
f-score are not applicable to the sets without anomalies (all sample sets for training
and all sets derived from the real datasets).

dataset presented in Section 4. Considering the four one-class learn-
ing algorithms (cf. Section 3.2), this resulted in 84 setups defined
by the dataset, mapping type, and the algorithm. For each setup,
we trained and evaluated a series of models. We carefully reviewed
the hyperparameters of these algorithms and examined 100 au-
toencoder designs and 1000 hyperparameter constellations for the
remaining three algorithms for each sample type. A list of the hy-
perparameters with corresponding value range is given in Table 11.

The recommended procedure for model selection is to split the
data available for training into a part that is actually used for train-
ing numerous models with different hyperparameter constellations,
and a separate part that is used to prevalidate all trained models
and to select the best one for the actual evaluation. This procedure
is effective for models that are created using multiple classes. For
our one-class case, however, it is not possible to determine a suit-
able model in this way. It can only show which models generalize
well from seen normal traffic (in the training phase) to potentially
unseen normal traffic in the prevalidation phase. However, this
procedure does not provide any indication of how well the models
can recognize anomalies, the class that is not present in the preval-
idation phase. Cross-validation cannot help here either. Thus, it is
not possible to make a good decision for a model, since theoretically
all good models can still be overfitted to normal traffic and are not
able to detect any anomalies. However, to show the potential of
anomaly detection for OT networks, which is the goal of this work,
we have therefore evaluated all models (not just a preselected one)
on the mixed traffic part and determined as best the one that can
recognize both parts well, i.e., has the best bacc value.

5.2 DetectionEffectiveness (Q1)
In order to determine the detection success when using protocol-
agnostic OT traffic inputs, we identified the model with the maxi-
mum accuracy 𝑏𝑎𝑐𝑐 from each of the 84 setups (cf. Section 5.1). By
using this value for selection, we deliberately assigned the same
importance to the recognition of the training set as to the detection
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capability in the monitoring phase. This is because every detector,
regardless of whether it is specifically designed for OT, must be able
to recognize far more normal traffic in its lifetime than attacks or
misconfigurations. And this normal traffic was very likely already
part of the training phase, especially in view of the homogeneity
associated with OT [24, 40, 96]. The following analyses, however, fo-
cus on the balanced accuracy on the validation set (𝑣𝑎𝑐𝑐) designated
for testing the detectors, which is in line with usual evaluations.

Specifics of theWDT dataset. In the course of the experiments,
we noticed that many models generated on packet samples of the
WDT dataset achieved a 𝑣𝑎𝑐𝑐 value of 75%. This seems to be a
natural limit. We found that roughly 15% of the samples composed
of anomalous labeled packets were also contained in the training
set created from normal samples. Due to these label mismatches,
the reachable detection rate is limited from the outset. Either the
WDT dataset is labeled by a procedure that hits too many normal
packets in parallel to an attack phase or flooding is performed by
replaying legitimate packets. There are three ways to limit the
negative effects of label mismatches on the performance of models.
These are label learning with label noise, label cleaning, and label
noise identification [56, 81]. We applied the last one and created a
fixed validation set in which the anomalous packet samples that
are also part of the training set were relabeled as normal ones.
To give a fair measure for the models found, we also determined
the effectiveness measures for this set as 𝑣𝑎𝑐𝑐 𝑓 and 𝑏𝑎𝑐𝑐 𝑓 . For
comparability with other research results, however, our discussions
focus on results with the originally labeled sample set.

5.2.1 Single-model Results. Table 6 summarizes the balanced accu-
racy results for the 48 setups, defined by dataset, sample type, and
machine learning algorithm, examined for the four public datasets.
In the appendix also the precision, recall, and F1-score are provided
for these models (cf. Table 13) in A.4 along with an explanation,
why these measures are less suitable than balanced accuracy for
the given detection problem. As no anomalies were available for
the evaluation of the 36 real-traffic models, only the recognition of
normal traffic (𝑣𝑎𝑐𝑐− ) could be measured for them. Since this repre-
sents only half of the coin regarding local effectiveness, the results
are only given for information in the appendix (cf. Section A.5).
For these models built from real traffic, however, at least the global
effectiveness can be completely determined. This is examined in
Section 5.4 by using the models on the validation traffic of the four
public datasets that contain anomalies. In Figure 3 the balanced
accuracy results on the validation sets (vacc) are additionally visu-
alized for all setups on public and real traffic. According to Table 6
twenty of the 48 models on public traffic have a 𝑣𝑎𝑐𝑐 over 0.90,
eleven over 0.95, and six over 0.98. The overall best models with an
accuracy of 1.00 were created when traffic flow samples were used.
This was two times the case, both for the dataset S7comm.

Sample types and algorithms. For flow samples the Isolation
Forest algorithm is particular suited. It gives the best results for
three of the four datasets. In contrast, it is the weakest algorithm on
samples from single packets or packet sequences. Here, the Elliptic
Envelope algorithm was in six of eight cases the best method per
combination of dataset and sample type.

Attack-level results. We further analyzed the degree to which
attacks and the individual attack types of the four public datasets

are detected. Table 7 summarizes the results using the best model
identified per dataset and mapping presented in Table 6. For maxi-
mum traceability, the names of the anomaly types are given as used
in the original data. For the Lemay dataset all attack types have
a medium intensity and are detected by all models. In case of the
WDT dataset, all attacks are very intensive indicated by the high
mean number of malicious samples per attack type, with the excep-
tion of several targeted scans. Here, 4 of 5 attack types are detected
100% by at least one of the three best models. Only the unspecified
type anomaly can only be detected in 98% of the occurences. What
is remarkable are the almost opposite results when using single-
packet and 3-packet samples on the attack types anomaly and scan,
which is a point we will further investigate. In contrast, the DNP3
dataset consists nearly exclusively of very subtle attacks. Here, 13
of 16 attack types contain in average less than three packets per
attack. From these 13 types more than the half can be detected well.
Unlike the WDT dataset, the models do not perform well on four of
six types of Man-in-the-Middle attacks. As expectable, fine-grained
injection attacks represent a difficulty for the protocol-agnostic
detection. However, the results also show that a detection of such
subtle attacks, in which the modification of payload data must be
identified, are possible with protocol-agnostic models. Likewise, the
S7comm attack types are very subtle and only differ significantly
in their number. Nevertheless, all 22 types are perfectly recognized
using single-packet samples.

False-alarm rates. Given the packet rates in the datasets of up
to 2871 packets per second (cf. Table 5), even a very small propor-
tion of misclassifications can lead to a very high number of false
alarms. In our scenario, the false-positive rate can be decreased by
a procedure neither limiting the detection sensitivity nor the speed
for reaction to an attack. Although our approach for continuous
detection initially evaluates every flow and every packet, not ev-
ery anomaly has to be reported individually. As long as it is not
defined too long, anomalies can be collected over a certain period,
duplications can be eliminated and the number of alarms reduced.
In critical infrastructures, automatic responses to attacks, such as
immediate disconnections of systems from the network, are gener-
ally not installed, as this would jeopardize rather than protect the
required 24/7 availability. The established response and reporting
procedures are therefore human-driven. As the speed of human
reception and decision-making is limited, extending the reporting
time to an appropriate period does not compromise the immediate
human reaction to malicious events. We therefore examined the ag-
gregation of false alarms for periods of 1 to 300 seconds. The effects
for using packet and 3-packet samples as input are summarized in
Figure 4. The concrete hourly rate of false alarms for an aggrega-
tion period of 30 seconds is stated in Table 8. The false-alarm rates
on flow samples could not be reduced by aggregation. Since their
frequency is lower, the initial and aggregated rates correspond to
the numbers in Table 8.

5.2.2 Discussion. Although the detection performance and false-
alarm rate achieved is not perfect, it should be evaluated in terms of
the combination of challenges that the detection approach takes up.
The detection capability was generated solely from training on nor-
mal traffic in order to be independent of any attack examples and to
be prepared for zero-day attacks. Every flow and packet is part of
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Table 6: Single-model effectiveness on the public datasets: Balanced detection accuracy for validation samples (𝑣𝑎𝑐𝑐) and training
and validation samples combined (𝑏𝑎𝑐𝑐) of the best model identified for each setup of traffic perspective, algorithm, and dataset.
The best model per sample type is printed in bold, the overall best model for the dataset is additionally underlined.

flow samples packet samples 3-packet samples

envelope iforest OCSVM CAE envelope iforest OCSVM CAE envelope iforest OCSVM CAE

Lemay 𝑣𝑎𝑐𝑐 0.8487 0.9479 0.8477 0.8227 0.5401 0.5405 0.9454 0.9374 0.9324 0.9694 0.9348 0.9795
𝑏𝑎𝑐𝑐 0.9223 0.9664 0.8967 0.8846 0.7655 0.7673 0.9216 0.9169 0.9331 0.9532 0.9196 0.9535

WDT 𝑣𝑎𝑐𝑐 0.8467 0.8544 0.8468 0.8258 0.7572 0.7524 0.7541 0.7523 0.7595 0.7568 0.7200 0.7204
𝑏𝑎𝑐𝑐 0.9233 0.9260 0.9234 0.8839 0.8739 0.8617 0.8658 0.8614 0.8774 0.8707 0.8591 0.8602

𝑣𝑎𝑐𝑐 𝑓 0.9471 0.9581 0.9471 0.9262 0.9088 0.9001 0.9033 0.8999 0.8337 0.8297 0.7840 0.7846
𝑏𝑎𝑐𝑐 𝑓 0.9735 0.9778 0.9735 0.9341 0.9497 0.9356 0.9404 0.9352 0.9145 0.9071 0.8911 0.8923

DNP3 𝑣𝑎𝑐𝑐 0.8790 0.9026 0.8004 0.7979 0.9395 0.7510 0.5441 0.5668 0.9566 0.8539 0.8139 0.5877
𝑏𝑎𝑐𝑐 0.9368 0.9378 0.9002 0.8989 0.9441 0.8435 0.7615 0.6555 0.9763 0.9056 0.8257 0.7435

S7comm 𝑣𝑎𝑐𝑐 0.9960 0.9920 1.0000 1.0000 0.9962 0.9216 0.5000 0.7602 0.9809 0.9684 0.9347 0.9736
𝑏𝑎𝑐𝑐 0.9958 0.9896 1.0000 1.0000 0.9907 0.8110 0.7500 0.8604 0.9898 0.9707 0.9673 0.9789

Figure 3: Validation accuracy (𝑣𝑎𝑐𝑐) per model for flow samples, packet samples and 3-packet samples (from left to right), with
datasets lacking anomalies distinguished by less opacity.

Table 7: Ratio of detected attacks and intensity per attack type for all public datasets.

1_
mo
vin
g_
tw
o_
file
s_m

od
bu
s_6
RT
U

2_
ex
plo
it_
ms
08
_n
eta
pi_
mo
db
us_
6R
TU
_w
ith
_o
pe
rat
e

3_
Cn
C_
up
loa
din
g_
ex
e_
mo
db
us_
6R
TU
_w
ith
_o
pe
rat
e

4_
ch
ara
cte
riz
ati
on
_m
od
bu
s_6
RT
U_
wi
th_
op
era
te

5_
sen
d_
a_
fak
e_
co
mm

an
d_
mo
db
us_
6R
TU
_w
ith
_o
pe
rat
e

to
tal Do

S
MI
TM

an
om
aly

ph
ysi
cal
fau
lt

sca
n
to
tal AR

P_
po
iso
nin
g

DN
P3
_re
co
nn
ais
san
ce

MI
TM

_fo
rw
ard
ing
_fr
om
_a
tta
ck
er

MI
TM

_fo
rw
ard
ing
_to
_a
tta
ck
er

MI
TM

_fr
om
_a
tta
ck
er

MI
TM

_h
ija
ck
_in
jec
tio
n

MI
TM

_m
od
ific
ati
on
_Im

me
dF
ree
zeN

R

MI
TM

_to
_a
tta
ck
er

inj
ect
ion
_C
old
Re
sta
rt

inj
ect
ion
_F
ree
zeO

bj

inj
ect
ion
_W
arm

Re
sta
rt

ma
ste
r_fl
oo
din
g_
fre
eze

ma
ste
r_m

asq
ue
rad
ing

ma
ste
r_r
ep
lay

ma
ste
r_r
ep
lay
_fl
oo
din
g

nm
ap
_re
co
nn
ais
san
ce

to
tal Ch

an
ge
Lo
we
rT
hre
sh
old

Ch
an
ge
Up
pe
rT
hre
sh
old

Ch
an
ge
Up
pe
rT
hre
sh
old
_F
loo
din
g

Co
nv
ey
orB

elt
Ga
teC
ha
ng
eD
ire
cti
on

Co
nv
ey
orB

elt
Ga
teC
ha
ng
eD
ire
cti
on
_F
loo
din
g

Co
nv
ey
orB

elt
Off

Co
nv
ey
orB

elt
Off
_F
loo
din
g

Co
nv
ey
orB

elt
On

Co
nv
ey
orB

elt
On
_F
loo
din
g

Co
nv
ey
orB

elt
Re
set

Wa
ter
Ta
nk
On
Ma
nu

Wa
ter
Ta
nk
On
Ma
nu
_F
loo
din
g

Re
act
orO

ff

Re
act
orO

ff_
Flo
od
ing

Re
act
orO

n

Re
act
orO

n_
Flo
od
ing

Wa
ter
Ta
nk
Off

Wa
ter
Ta
nk
Off
_F
loo
din
g

Wa
ter
Ta
nk
On
Au
to

Wa
ter
Ta
nk
On
Au
to_
Flo
od
ing

Em
erg
en
cy
Sto
p

Gl
ob
alR
ese
t

to
tal

Lemay WDT DNP3 S7comm total

#attacks 4 10 2 59 1 76 5 2 266 8 30 311 125 5 353 97 15 15 6 7 6 18 3 4026 142 206 4544 12 9580 6 6 18909 8 22178 6 56357 18 118386 10 8 17608 4 57931 28 80225 4 85158 10 208596 2 4 665k 675k

detection ratio per sample type

flows 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.45 0.50 0.80 0.50 – 1.00 – – – – – – – – – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – – 1.00 – – 1.00 1.00 1.00 1.00 – – – 1.00 1.00 – – – 1.00 1.00 1.00 1.00 1.00 0.999
packets 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08 1.00 1.00 0.83 1.00 1.00 0.89 0.62 0.93 0.40 0.00 0.29 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999
3 pkts. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.00 0.89 1.00 1.00 0.41 0.29 0.33 0.53 0.17 0.71 0.33 0.56 0.67 1.00 1.00 1.00 1.00 0.83 0.97 0.33 0.33 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.99 1.00 0.99 0.93 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.99 0.989

intensity of the attack type in #malicious packets per attack

min. 5 1 28 1 10 87k 150k 1 94k 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
max. 41 487 93 199 10 2971k 197k 334k 310k 1 7 3 12 10 8 2 2 4 1 1 1 2 2 2 2 217 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mean 19 120 61 114 10 753k 174k 5023 155k 1 1 2 3 2 4 1 2 1 1 1 1 1 1 1 1 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Legend: –: attack type not visible in flows; k: 103

Figure 4: False-alarm drop for different aggregation periods.

the detection for maximum local effectiveness. They are prepared as
samples without any knowledge or assumption about the protocol
stack, without neglecting the analysis of user data. The fine-grained

Table 8: False-alarm rates per hour for the best model per
dataset (highlighted in Tables 6 and 14) and sample type
when using an aggregation period of 30 seconds.

Lemay WDT DNP3 S7comm DMZ plant steam

flow samples 10 52 5 0 0 2 0
packet samples 100 404 1506 312 11 0 0

3-packet samples 688 9682 502 492 3; 26 0 0

analysis of packets and packet sequences is accompanied by an im-
mense number of samples, from which an enormous number of
correct classifications are simultaneously achieved despite the ini-
tially remaining false-alarm rate. An alternative approach to reduce
false alarms is to define a threshold for the number of anomalies
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Table 9: Prior results on traffic from public datasets (best
stated in case of several results) compared to our work (best
𝑣𝑎𝑐𝑐 from Table 6) for the respective detection measures.

Lemay WDT DNP3 S7comm

[8] [93] [1] [92] [74] here [48]* [24]* [21] here [8] here [8] here

accuracy 0.99 0.72 0.99 0.94 1.00 0.97 0.75 0.75 0.86 0.85 0.77 0.95 0.97 1.00
f-score (AUC) 0.91 0.99 0.74 1.00 0.95 0.19 0.02 0.76 0.83 (AUC) 0.75 (AUC) 1.00

precision 0.74 0.92 0.42 0.80 0.99 0.63 1.00

Results for approaches marked with * are taken from [96].

that must be reached in order to generate an alarm. We deliberately
do not pursue this approach, as this method is associated with blind-
ness to all attacks below the threshold value. With our approach,
an attacker cannot infiltrate the system with little activity, as every
specific attack trace (anomalous sample) is detected and alerted,
only the duplication of alerts is catched.

5.2.3 Comparison with Previous Works. In order to further assess
the results regarding local effectiveness on the public datasets we
identified previous detection approaches applied to them. For this,
we reviewed every publication citing the papers that introduced the
datasets and identified 23 publications providing detectionmeasures
on the traffic parts of at least one of the four datasets. We do not
go into 13 of the methods [2, 9, 27, 32–34, 41, 45, 82, 87, 91, 96, 98],
as they do not address the greater challenge of using only one
class for setting up the detection [7, 40]. The works that pursue a
one-class-based detection, as we do, are summarized in Table 9.

Lemay dataset. As argued in Section 4.1, all approaches evalu-
ated on the Lemay dataset before April 2023 could not (properly)
consider 40% of the validation packets we used in our experiments
because not all of them had correct labels. Therefore, better results
using anomaly detection (based on single-class training) on that
dataset [1, 8, 74] cannot be directly related to our results.

WDT dataset. In the case of the WDT dataset, a nominal bet-
ter accuracy (by 0.01) is only reached by fusing features from the
physical processes with additional features extracted from network
traffic to work with these cyber-physical fusion features [21]. Con-
sequently, this approach is not purely communication-based as we
realize it for the reasons we gave in Section 2.2 and the drawbacks
of detection approaches based on process data further substantiated
in Section A.1 in the appendix.

DNP3 and S7comm datasets. The only one-class approach [8]
applied to both captures is also designed as protocol-agnostic pro-
cedure incorporating payload. It is evaluated on three of the public
datasets (Lemay, DNP3 and S7comm). Unfortunately, the detection
results are only provided as receiver operating characteristic (ROC)
curve and area under the curve (AUC) for true-positive (detected
attack data) to false-positive (false alarms) relations, from which
the true performance of the classifier, including low or high preci-
sion, cannot be inferred [4]. Furthermore, the approach relies on
the construction of hidden semi-Markov models, Gaussian mix-
ture models, and probalistic suffix trees for the detection. Since the
computational complexity is stated as quadratic to the states of the
Markov models and size of the suffix tree’s range, the advantage
of combining these three complex models over the use of already
available and sophisticated (machine learning) routines is not clear.

5.2.4 Ensemble Detection Effectiveness. As we could not identify
a single dominant machine learning algorithm for the protocol-
agnostic anomaly detection, we also carried out a comprehensive
evaluation of ensembles of these models in order to determine if
their combination outperforms single models. For each dataset, all
models were used in parallel and different decision strategies were
measured as provided in Section A.6 in the appendix. The main
result was that ensembles are not more effective than the best single
model per dataset, but they can grant this property if the best model
of a group of models is not known in advance. In practise, this is the
case as long as the models have not been confronted with attacks
and their individual performance could not been identified yet.

5.3 Detection Efficiency (Q2, Q4)
The aim of the efficiency analysis is to assess whether the effective-
ness of the approach is compromised by insufficient speed. This
would be the case if the detection process were too slow to process
all traffic in real time. Monitoring data would be discarded regu-
larly and the process would partially be blind against attacks. The
autoencoder measurements were carried out on an AMD machine
with 5700 bogomips per core (AMD EPYC 7443 24-Core Processor)
with 264GB RAM. All other measurements were made on an AMD
machine with 7786 bogomips per core (AMD Ryzen Threadripper
PRO 3955WX) with 64GB RAM. All experiments were executed
using a prototype implementation not yet realizing multi-threading.
We discuss the mean times. This does not consider traffic peaks,
but it is sufficient to evaluate whether the processing speed and
data rates correlate in such a way that the system with a buffering
of traffic peaks could process the whole traffic of the network.

5.3.1 Results on Packet Samples. It is sufficient to limit the evalu-
ation on the processing of the most complex sampling procedure,
which is the single-packet sampling. The effort is much higher than
for the analysis of fewer flows with also fewer features. The results
are also valid for 3-packet samples because a 3-packet sample is cre-
ated with every observed single packet (with its two predecessors).
For the 3-packet variant, the necessary parsing (of maximum 11
payload bytes) and concatenation with prior samples is less costly
than sampling the larger payload prefix in the course of single-
packet sampling (57 bytes). Figure 5 summarizes the packet sample
processing load in percentage. It is calculated as fraction from the
number of packet samples that can be processed per second by the
used architecture and the packet rate in the datasets, i.e., the number
of packet samples that have to be processed per second for real-
time capability of the detection. The processable number of packet
samples per second was derived by the time needed to process a
single packet sample, observable in Table 16 in Section A.7.

Datasets. The most demanding public dataset is WDT, the real
dataset with highest packet rate is the DMZ trace. The first one
corresponds to 2871 packets per second, the second one to 1423
packets (cf. Table 5). In the case of the WDT dataset, the number
of packet samples to be trained per second exceeds the capability
of the detection system by a factor of 15. For the DMZ trace, an
overload of 27 to 333% was observed. The prediction procedure
of the models is less intensive than the fitting step, so that the
detection process is only too slow for the two datasets when using
the Isolation Forest algorithm. For the five remaining datasets, the



RAID 2024, September 30–October 02, 2024, Padua, Italy Franka Schuster and Hartmut König

Figure 5: Packet sample processing load in % while model
training (top) and prediction of validation samples (bottom),
as summary of the measurements provided in Section A.7.

training and the detection can be performed in real time using any
of the four algorithms. Here, the number of processable packet
samples is (far) below the packet rate of the respective dataset.

Algorithms. The dominant factors for the sample processing
times are determined by the model fitting step in the training phase
and the prediction performed by the model in the detection phase.
The Elliptic Envelope algorithm, which is the most represented
one among the best models in Section 5.2, is also the most time-
consuming algorithm regarding model training. The algorithmwith
the most efficient fitting procedure is Isolation Forest. Regarding
prediction, however, the tree-based algorithm is the less efficient
one for six of the datasets. The One-class Support Vector Machine
followed by the Elliptic Envelope are the fastest algorithms.

5.3.2 Discussion. From a practical perspective, only the detection
(prediction) must be real-time capable. When no continuous learn-
ing is applied, the training can be performed offline, eventually even
apart from the network using traffic captures for the machine learn-
ing on dedicated training servers. In critical infrastructures, several
aspects speak in favor of carrying out the detection phase on the
premises14. This requires the algorithms to keep up with data rates
using hardware that is realistic to be placed in the infrastructure.
The results, with the exception of 2/28 of the cases, show that the
protocol-agnostic detection scheme, even at the stage of a single-
thread implementation, executed on such hardware can completely
analyze the traffic of OT networks. In 24/28 cases the experiment
workstation was below 11% on average for fulfilling the detection
task. We conclude that a self-learning anomaly detection including
payload in a protocol-agnostic manner, especially when extended
to a hardware-efficient multi-threading application, can analyze
data rates of OT networks in real time without dropping traffic.
This demonstrates that the local and global effectiveness of the
proposed approach is not compromised by insufficient efficiency.

5.3.3 Comparison with Previous Works. To the best of our knowl-
edge, a comparable measurement of individual processing steps
with relation to real OT data rates has not been performed, yet.
Relevant papers addressing performance issues are rare (cf. Table 1)
and did not go beyond quantifying a single step, such as parsing
times [74].

14These include data protection and independence from external systems for security-
relevant operations.

5.4 Model Transfer Potential (Q3, Q4)
The protocol-agnostic nature of the detection approach raises the
question to what extent models trained on one dataset can be used
for attack detection on traffic from another dataset. If there is a
reuse potential, a knowledge transfer among infrastructures would
be possible and the training-based configuration of the detection
process could be minimized. For answering the question, we used
the models identified in Section 5.2 to classify the associated sample
sets from all other six datasets. We applied the already trained mod-
els to imitate the scenario that a detector trained in one network is
applied in another one. All 504 possible transfer scenarios (7 × 6
dataset combinations, three sample types, and four machine learn-
ing algorithms) were examined. In addition to the overall results,
we examined two related subquestions. (1) Does the transferability
of models depend on the similarity of the protocol mixes present in
the model’s source dataset and the transfer target dataset and (2) do
the models created from the real datasets possess the capability to
correctly detect anomalies in foreign data? The last question arises
from the fact that the real datasets could only partially be evaluated
due to the impossibility of generating anomalies in their networks.

Overall transfer results. The results are summarized in Fig-
ure 6 and Table 10. The dominant learning algorithm in the experi-
ments with an accuracy of higher 90 % was the OCSVM method,
with 34 occurences, followed by the Elliptic Envelope algorithm
with 22 models and the Isolation Forest procedure with 19 repre-
sentatives. In 33 cases of this group (roughly 6.5 % from all exper-
iments), even a perfect balanced accuracy of 100% was reached.
Among these models, 10 Isolation Forest models and 10 OCSVM
models were present, followed by 7 Convolutional Autoencoders.
From the amounts collected in Table 10 we conclude that there is a
clear potential for the reuse of one-class trained attack detectors
in OT networks when traffic is analyzed in a protocol-agnostic
manner. Nevertheless, the accuracy range of a model when applied
to foreign data is very high in most cases, as it can be seen in Fig-
ure 6. Unfortunately it cannot (yet) be concluded that a relatively
high minimum accuracy is guaranteed for a certain combination
of sample type and algorithm. Here, further tuning, such as a little
re-learning in the new infrastructure, could help lower the hurdles.

Sensitivity to protocol mix similarity.We investigated the
transfer scenarios where source and target network are dominated
by the same OT protocol, but could not identify a positive transfer
effect. We provide the results in Section A.8 in the appendix.

Table 10: Amount of transfer scenarios per sample type and
reached validation accuracy 𝑣𝑎𝑐𝑐.

𝑣𝑎𝑐𝑐 ≥ flows packets 3 packets total % scenarios

0.85 52 24 24 100 19.84
0.90 51 21 15 87 17.26
0.95 46 12 15 73 14.48
0.98 36 12 13 61 12.10
1.00 22 4 7 33 6.55

Anomaly detection capability of themodels built from real
traffic. We analyzed the transfer scenarios with a model trained
on a real network and applied to a public dataset that provides
anomalies for evaluation. For all real datasets (DMZ, plant control,
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Figure 6: All model transfers: Detection capability (𝑣𝑎𝑐𝑐) of models trained on the indicated dataset and applied to the validation
sample sets of all other datasets. It is summarized for the sample types (subfigures) and the four models trained per dataset
(x-axis of each subfigure) how each model performs on the same sample type of the other six datasets.

and steam production), a model was found that could be proven at
least on one testbed dataset to be capable to effectively distinguish
normal traffic from anomalies. In total, a model was found for each
of the real datasets, for which a detection capability higher 90%
was achieved. This proves the feasibility of the protocol-agnostic,
one-class trained anomaly detection also for real traffic, what was
not possible to show in Section 5.2 due to the lack of real anomalies.

6 CONCLUSIONS
In this paper, we present a protocol-agnostic anomaly detection ap-
proach for OT traffic. It can be applied ➊ without any assumptions
about the network, OT technology, or the OT processes installed
➋ directly on a network switch without dependence on further
external (logging) systems, ➌ using only normal traffic for model-
ing the detection logic addressing the absence of attack examples
in most real networks and the ability to detect zero-day attacks,
➍ to detect not only comparatively easily observable DoS attacks
but also fine-grained injection attacks by analyzing also packet
payloads in a protocol-agnostic manner, and ➎ without blindness
because the detection is applied to every flow and packet of the
complete traffic mix without any filtering. We have evaluated the
approach for three traffic perspectives (network flows, packets, and
packet sequences) with four machine learning algorithms on seven
datasets including four public and three real OT traffic traces. The
outcome of the analyses referring to the initial questions are:

Detection effectiveness (Question 1).We did an evaluation of
84 combinations of traffic perspective, machine learning algorithm,
and dataset. For the four public datasets, we measured in 20 of
48 setups a balanced accuracy higher 0.90, for eleven higher 0.95,
and for six higher 0.98. These results show that the same (or even
better) detection capability is achieved, for which multiple protocol-
specific and more complex methods were required previously (cf.
Section 5.2.3). Besides the local effectiveness, the results on several,
very diverse datasets also demonstrate the global effectiveness of
the protcol-agnostic detection. We further analyzed which heavy
and subtle attack types are detected to which degree and found that
also fine-grained injection attacks can be detected in a protocol-
agnostic manner (cf. Section 5.2.1). We then worked out which
false-alarm rates the remaining false decisions still correspond to,
also for real traffic rates, and proposed and demonstrated a measure
for minimizing them without reducing the detection capability.

Detection efficiency (Question 2). We further analyzed if the
local effectiveness could be compromised by a too slow detection
process, using the most expensive type of traffic samples. We mea-
sured the time consumption of each step of the traffic preparation
and analysis, which has neither been done before at this granularity

nor with the inclusion of several real datasets. We worked out that,
although a significant amount of packet payload is part of the de-
tection process, it can be implemented with real-time capability (cf.
Section 5.3). Hence, the detection is not limited by dropped traffic.

Model transfer to foreign traffic (Question 3). The protocol-
agnostic nature of the detection approach allows to potentially use
models trained in an OT network (here on one dataset) for the
detection in foreign networks (on other datasets). This transfer-
ability was examined for all 504 potential transfer scenarios (7 × 6
dataset combinations, 3 sample types, and 4 algorithms). In 17%
of the cases a balanced accuracy higher 0.90 and in 6.5% 1.0, i.e.,
the perfect classificiation of normal and anomalous traffic, was
achieved. From these numbers we conclude a clear potential of
the reuse of one-class trained attack detectors in OT networks if
the traffic is analyzed in a protocol-agnostic manner. However, we
could not (yet) prove a beneficial effect on the transfer if realized
with a similar protocol mix in the source and target traffic.

Effect of different traffic perspectives (Question 4). Most of
the best single models have been derived from flow and 3-packet
samples (cf. Table 6). The flow perspective is also particularly ben-
eficial with regard to the transfer of models (cf. Table 10). Unfor-
tunately, flow samples are not applicable on traffic transmitted
without the IP layer, which causes blindness of this perspective
regarding GOOSE traffic and related attack types, for instance, as ob-
servable in Table 7. Regarding the sample types including payload,
we found out that packet sequences are more beneficial for detec-
tion purposes than modeling single packets. They have a higher
count in the best models per dataset (cf. Table 6). Their detection
success for some attack types, however, is inverse to that when
using single packets (cf. Table 7). Hence, single packets and packet
sequences as detection perspectives should be combined.

After measuring the local and global effectiveness and efficiency
of our protocol-agnostic detection scheme in this paper, we will
in a next step compare the models regarding the reflected traffic
knowledge to provide explanations for alarms to potential users.

Material.We provide relevant material for comparative analyses
and further developments online: https://wissenwerk.de/raid2024
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A ADDITIONAL INFORMATION AND
RESULTS

A.1 Problems with Detection Approaches based
on Process Data

There are a number of serious issues with detection schemes based
on process data.

Issue 1: Unclear benefit compared to the already estab-
lished process monitoring. Every OT (sub-)system deployed for
controling a sufficiently complex process already contains a moni-
toring appliance. This is a basic function necessary for operators
to monitor and control the process. Otherwise, it cannot operate
reliably. When reviewing process-based detection approaches, we
could not find any discussion regarding the benefits of the pro-
posed attack detection systems compared to the built-in monitoring
functionality of already deployed process control systems. Many
complex detection approaches mainly identify activity which can
also be determined by simple heuristics [95]. Since such compara-
tively simple checks are usually a built-in functionality of process
monitoring systems, as a decades long standard, the benefit of an
additional monitoring function on top is questionable. The advan-
tage of communication-based approaches, in contrast, lies in the
analysis of the communication activities underlying the process.

Issue 2: Absence of sufficiently prepared process data in
real infrastructures. Based on years of experience with real-life
infrastructures we can say with certainty: One cannot assume a
historian, i.e., time-series OT databases with a large amount of
well-structured and collected data, in real infrastructures, as it is
provided by the most prominent testbed SWaT [28]. A single plant
may contain dozens of subsystems. Many of them produce only
error logs that do not contain a single concrete process value. They
further store logs locally so that a person has to go to the system
console to have a look at the logs. The nice idea of a central point
holding a multitude of sufficiently precise information for external
usage is unfortunately an illusion. One reason are stringent war-
ranty restrictions imposed by system vendors which severely limit
the possibilities of system operators to attach deployed systems to
a global log system.

Issue 3: Downstream detection based on logging instead
of directly analyzing OT activities. The term historian for time-
series databases in OT infrastructures already hints to the drawback
of process-based detection systems analyzing their data. The avail-
able records contain information about process events or states that
have been reported by the OT equipment in the past. Although
this past may not be long ago, information processing in a his-
torian always takes place after the activity happened, whereas a

communication-based detection system directly monitors the net-
work activities, such as physical value settings. Therefore, they
have a clear advantage regarding the detection time. Furthermore,
recently disclosed vulnerabilities [20] in historians call into question
the reliability of these systems.

Issue 4: Detection methods built on non-standardized in-
put. Even if log data was available to the expected extent on each
system, there would be another problem. There is no homogenous
standard for producing process log data regarding granularity, struc-
ture, and meaning of the data items. This makes every detection
system built on top of the logging of data to a detection system that
only relates to the respective individual log setting. Network traffic,
in contrast, already is a well-defined, consistent, and fine-granular
source (with flows or packets as informational items) incorporating
generally agreed information structures explored for decades in
form of standardized flow characteristics [15, 16, 68] and protocol
stacks of packets. Therefore, traffic-based detection systems can
potentially be applied in every other network.

A.2 Used Machine Learning Algorithms
From preliminary experiments, we select the following machine
learning algorithms from four different families.

Covariance-based: Elliptic Envelope (envelope). The idea
of the algorithm is to fit a probability distribution to given input
interpreted as data points, which is in our case a Gaussian one.
Then, a covariance matrix is identified with the lowest possible
determinant that still covers a defined ratio of the data points. All
uncovered points are considered as outliers. Although we do not
assume a Gaussian distribution of the input data, we examine how
well this algorithm performs for our problem.

Kernel-based: One-class Support VectorMachine (OCSVM).
This algorithm is an adaption of the original Support Vector Ma-
chine method [18] to be usable for one-class learning. Input samples
with n features are considered as data points in n-dimensional space.
For these points a hyperplane is determined that separates all points
from the origin with maximum distance between hyperplane and
origin, for which the data points usually must be transmitted in a
higher-dimensional space. After training, samples situated between
the origin and the hyperplane are considered as anomalies. Points
lying on the hyperplane are called support vectors, which led to
the algorithm’s name.

Tree-based: Isolation Forest (iforest). This algorithm identi-
fies anomalies by two quantitative properties: as being fewer and
having attribute values different to normal instances. An ensemble
of isolation trees is then built in such a way that anomalies are
isolated closer to the root of each isolation tree. Thus, anomalies
are those cases that have short average path lengths in the trees.

Neural-Network-based: Convolutional Autoencoder (CAE).
After investigating the design options for artificial neural networks
(ANN), we decided to examine a network type which incorporates
so-called convolutions [30, 85]. Here, the complexity of single ma-
trix calculations is decreased by separately applying them to smaller
parts of the input data. We further decided to structure the ANN as
autoencoder because the encoder part realizes an implicit feature
extraction through sample compression, which can be beneficial
for the detection success. Our decision was further strengthened by
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Table 11: Probed hyperparameter space per classifier.

hyperparameter parameter space

Elliptic Envelope

ratio of points to be included [0.001, 0.9999]
ratio of outliers expected during training [1/all samples, 0.1]

Isolation Forest

number of trees [1, 200]
sample number for training a tree [200, all samples]
ratio of outliers expected during training [1/all samples, 0.1]

One-class Support Vector Machine

kernel type [linear; polynomial;
radial basis function;
sigmoid function]

ratio of support vectors to training samples [0.0001, 1]
number of training samples [0.00001, 1]

Convolutional Autoencoder

number of convolutional layers [1, 2]
size of convolutions [2, 4]
activation function [relu; sigmoid; swish]
number of feature maps [16; 28; 40; 52; 64; 86]
number of dense layers [2, 5]
dropout rate [0.0, 0.9]

results regarding OT process data. It has been shown that 4-layer
convolutional autoencoder (CAE) designs applied to OT sensor data
are nine to 36 times faster (with at least the same detection accuracy)
than designs incorporating LSTM15 cells [39], which due to their
novelty have strongly been represented in research recently. We
use the autoencoder for classification by deriving the decision for
a class based on the reconstruction error determined between the
output (reconstructed samples) of the autoencoder and the original
samples used as input. A list of the hyperparameters used for tuning
the models with corresponding value range is given in Table 9.

A.3 Additional Information to the Public
Datasets

We reviewed available public datasets with network traffic and
summarize them in Table 12.

Sufficient dataset labeling. We consider a dataset as suffi-
ciently labeled if the authors either directly provide a flag to each
network packet of the traffic or the attack periods are given so
precisely that such a labeling can be derived by the users. For the
QUT S7 (Myers) dataset, for instance, it was not possible for us
to assign the attack phases to certain packets due to inconsistent
timestamp deviations.

Parts used for training and validation.We used the following
captures, stated per dataset, in our work. Information to the Lemay
dataset are already provided in Section 4.1.

15Short form for Long Short-term Memory.

Table 12: Reviewed datasets with raw OT network traffic.

year labeled OT protocol(s)

CyberCity [35] 2013 Modbus, Ethernet/IP
4SICS [59] 2015 Modbus

S4x15 ICS [60] 2015 Modbus, BACnet
Lemay [43] 2016 ● Modbus

QUT S7comm [63] 2017 ● S7comm
QUT DNP3 [62] 2018 ● DNP3, GOOSE

Modbus SCADA #1 [19] 2018 Modbus
QUT S7 (Myers) [57] 2018 ●16 S7comm

HVAC [58] 2019 S7comm
SWaT [61] 2020 EtherNet/IP, CIP
EPIC [61] 2021 Modbus, IEC61850
WDT [31] 2021 ● Modbus

WDT datatset. We used normal.pcap for training and the re-
maining capture files as validation traffic. The attacks included
Man-in-the-Middle, Denial-of-Service, and scanning activities.

DNP3 dataset.We used control/testing/frequent/slave.pcap as
normal traffic for training and attacks/testing/frequent/slave.pcap
for validation.

S7commdataset.Our experiments were conducted on the traffic
captured in the files called master.pcap. The one taken from the
control set was used for training, the one belonging to the part
called s7_process_attacks for validation.

A.4 Detection Effectiveness (Q1) on the Public
Datasets

Besides the balanced detection accuracy provided in Table 6 we fur-
ther summarize the precision, recall, and F1-score of the detection
models in Table 13. This allows us to relate the performance of the
models to other research results using these measures. They are
defined as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

At the same time, we point out the limitations of these metrics
to assess our models, which is why we use the balanced accuracy
to evaluate them in the main part of our work. These are:

• The measures precision, recall, and F1-score completely dis-
regard true negatives, i.e., correctly detected normal samples.
However, the addressed detection scenario, like most prob-
lems, is very imbalanced in the real world, since attacks are
usually exceptions and normal communication strongly pre-
dominates. Therefore, the correct classification of normality
plays a particularly important role and should be included
in the evaluation accordingly.

• Since the three measures do not include the (correct or in-
correct) classification of all samples, they should only be
used with balanced datasets because they are misleading for

16We omit this dataset because timestamp deviations do not allow the use of this
dataset in a reliable manner.
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the measurement of datasets with imbalanced class mem-
bership. The balanced accuracy used in the main part, in
contrast, is always meaningful, as it equally incorporates the
classification of all samples.

• Precision, recall, and F1-score are primarily influenced by
the amount of true positives (TP), i.e., correctly detected
anomalous samples. However, the detection of an attack does
not require to detect every associated anomalous sample. For
our approach, the detection of a single anomalous sample
is sufficient. Therefore, the three TP-driven metrics can be
low and the model can still detect all attacks. Potentially low
values should therefore be considered in combination with
the ratio of detected attacks provided in Table 7.

We deliberately refrained from first creating an artificially balanced
problem from the given datasets, as this does not help to find prac-
ticable solutions for the imbalanced real scenario. Instead, we delib-
erately wanted to test the approach on the actual conditions. This
is why we use the balanced accuracy to measure the effectiveness
of the detection models in the main part instead of precision, recall,
and F1-score.

A.5 Detection Effectiveness (Q1) on the Real
Datasets

The experiments with the real datasets are summarized in Table 14.
They included 36 setups defined by the dataset, the sample type, and
the machine learning algorithm. Due to the absence of anomalous
network traffic in the real datasets, only one side of the coin can be
evaluated here, which is a correct classification of normal network
traffic. In this respect, the results for the algorithms Elliptic Enve-
lope, Isolation Forest, and OCSVM can be considered as very good.
Here, a validation accuracy higher 0.99 was measured in 26 of 27
cases. The perfect value of 1.00 was reached in 12 cases. The CAE
performs comparatively poorly with the real datasets, regardless
of the sample type used. Only one third of the models have a 𝑣𝑎𝑐𝑐
value higher 0.95, none a value higher 0.98.

A.6 Ensemble Detection Effectiveness (Q1)
The fact that each of the examined machine learning algorithms
showed at least once an accuracy on the validations set 𝑣𝑎𝑐𝑐 greater
than 0.98 and all algorithms are present among the best model of
each dataset made us curious for further investigations. We wanted
to find out whether the detection results could generally be im-
proved by using ensembles of models instead of single models.
Thus, we determined collective decisions for each constellation of
dataset and sample type using all four identified machine learning
models in parallel. The investigated ensemble stategy considers
single predictions as votes. Each prediction of a sample’s class as
anomaly is counted as a vote for the class anomalous traffic. The
ensemble prediction for the anomalous class regarding a sample is
then derived from the respective count of the single models’ predic-
tions on the same sample towards this class. Table 15 summarizes
the results of the 21 constellations of dataset and sample type. Mea-
surements were made for the cases (strategies) if the ensemble’s
anomaly prediction is based on at least one (1/4), two (2/4), three
(3/4) or four (4/4) anomaly predictions from the four single models
corresponding to the sample type and dataset.

Local effectiveness. The subject of the experiments was to
find out if a voting point can be identified where in most of the
21 constellations the false classifications among the models can be
balanced to gain a higher validation accuracy from the ensemble
compared to the best single model. Unfortunately, in most con-
stellations no significant advantage can be observed by using all
four identified models for a constellation as ensemble to just using
the identified best single model. With a single vote as a sufficient
criterion for the ensemble’s anomaly decision, the least tolerant
model dominates the overall vote negatively by its number of false
positives. Starting with two out of four necessary votes for the
anomaly decision, this disadvantage is eliminated for most constel-
lations, but also no increase in the validation accuracy 𝑣𝑎𝑐𝑐 and
no reduction in the false classification rate can be observed. For
three constellations (packet samples on Lemay and S7comm, and
3-packet samples on S7comm), the false-negative (missed anom-
alies) rate rises noticeably indicated by increased overall false rates
with hardly any decrease in false alarms. Consequently, the local
effectiveness of a protocol-agnostic detection is not necessarily im-
proved by using ensembles of protocol-agnostic detection models.
A well-fitted single model may be sufficient with the advantage of
only having to configure and operate one model for detection. At
the same time, the ensembles are no worse than the best individ-
ual model in most cases. This is important for the application in
real-world conditions. Here, the quality of a single model is not
known until it was exposed to anomalous network activity. By
using ensembles across several algorithms, poorer models can be
compensated and a similar detection level can be ensured as for the
best individual model, without having to know it in advance.

A.7 Background Results for Detection
Efficiency (Q2)

The diagrams given in Section 5.3 are derived from the measure-
ments on the public and real datasets provided in Table 16.

A.8 Transfer Sensitivity to Protocol Mix
Similarity (Q3)

For this aspect, we took a closer look at the transfer scenarios where
source and target network use the same dominant OT protocol
(Modbus/TCP), which applies to the public datasets Lemay and
WDT, as well as the real dataset steam production. The results
of the 72 experiments (3 × 2 dataset combinations, three sample
types, and four machine learning algorithms) are illustrated in
Figure 7. In a small number of 5 experiments (approximately 7%)
a balanced accuracy of higher 90% was achieved. Here, flow and
packet samples are equally represented, each with two models.
The Elliptic Envelope algorithm has two occurences, all others
have one. A perfect balanced accuracy of 100% was achieved in
only two cases (about 3%), one time with flow samples and one
time on single-packet samples. In the two experiments the OCSVM
algorithm and an Autoencoder were applied. Consequently, a lower
fraction of models achieves an accuracy between 90% and 100%
when compared to all transfer scenarios. Hence, the experiments
with a Modbus dataset as source and target dataset surprisingly
turn out to be comparatively weak. A dependence of the transfer
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Table 13: Single-model effectiveness on the public datasets: Precision, recall, and F1-score of the best model identified for each
setup of traffic perspective, algorithm, and dataset.

flow samples packet samples 3-packet samples

envelope iforest OCSVM CAE envelope iforest OCSVM CAE envelope iforest OCSVM CAE

Lemay precision 0.7000 0.6429 0.5600 0.5417 0.9692 0.9970 0.9855 0.9838 0.9781 0.9826 0.9728 0.9252
recall 0.7000 0.9000 0.7000 0.6500 0.0812 0.0811 0.8957 0.8804 0.8723 0.9453 0.8789 0.9893

F1-score 0.7000 0.7500 0.6222 0.5909 0.1498 0.1500 0.9385 0.9292 0.9222 0.9636 0.9235 0.9562

WDT precision 0.9990 0.9930 0.9996 0.9248 0.9747 0.9262 0.9418 0.9249 0.9868 0.9533 0.9921 0.9999
recall 0.6942 0.7140 0.6940 0.7107 0.5237 0.5338 0.5305 0.5341 0.5238 0.5315 0.4425 0.4410

F1-score 0.8192 0.8307 0.8192 0.8037 0.6813 0.6773 0.6787 0.6772 0.6843 0.6825 0.6120 0.6121

precisionf 0.9990 0.9930 0.9996 0.9152 0.9643 0.9019 0.9222 0.9004 0.9822 0.9424 0.9907 0.9999
recallf 0.8949 0.9204 0.8946 0.9066 0.8281 0.8309 0.8304 0.8310 0.6730 0.6783 0.5705 0.5693

F1-scoref 0.9441 0.9553 0.9442 0.9109 0.8910 0.8649 0.8739 0.8643 0.7987 0.7888 0.7241 0.7255

DNP3 precision 0.2299 0.1643 0.2192 0.2105 0.1728 0.1278 0.1041 0.0085 0.6334 0.4619 0.2035 0.0177
recall 0.8696 1.0000 0.6957 0.6957 0.9112 0.5286 0.0943 0.9415 0.9211 0.7203 0.6661 0.9376

F1-score 0.3637 0.2822 0.3334 0.3232 0.2905 0.2058 0.0990 0.0168 0.7506 0.5629 0.3118 0.0347

S7comm precision 0.9130 0.8400 1.0000 1.0000 0.9875 0.7951 TP=0 0.5496 0.9966 0.9896 0.9992 0.9847
recall 1.0000 1.0000 1.0000 1.0000 1.0000 0.9930 0.0000 1.0000 0.9722 0.9688 0.8716 0.9955

F1-score 0.9545 0.9130 1.0000 1.0000 0.9937 0.8831 TP=0 0.7093 0.9842 0.9791 0.9310 0.9901

Table 14: Single-model effectiveness on the real datasets: Detection accuracy for training samples (𝑡𝑎𝑐𝑐), validation samples
(𝑣𝑎𝑐𝑐) and both (𝑏𝑎𝑐𝑐) of the best model identifed for each setup of traffic perspective, algorithm, and dataset. The best model
per sample type is printed in bold, the best model for the dataset is also underlined.

flow samples packet samples 3-packet samples

envelope iforest OCSVM CAE envelope iforest OCSVM CAE envelope iforest OCSVM CAE

DMZ 𝑡𝑎𝑐𝑐 0.9999 1.0000 1.0000 0.9279 0.9980 0.9999 0.9998 0.9698 0.9999 0.9999 0.9806 0.8454
𝑣𝑎𝑐𝑐− 1.0000 1.0000 1.0000 0.9223 0.9979 0.9999 0.9998 0.9689 0.9999 0.9999 0.9798 0.8521
𝑏𝑎𝑐𝑐− 0.9999 1.0000 1.0000 0.9251 0.9980 0.9999 0.9998 0.9693 0.9999 0.9999 0.9802 0.8488

plant 𝑡𝑎𝑐𝑐 0.9997 0.9995 1.0000 0.9527 0.9999 0.9999 1.0000 0.9031 0.9999 0.9999 1.0000 0.8956
control 𝑣𝑎𝑐𝑐− 1.0000 0.9997 0.9995 0.9507 1.0000 1.0000 1.0000 0.8987 1.0000 0.9999 0.9999 0.8693

𝑏𝑎𝑐𝑐− 0.9998 0.9996 0.9997 0.9517 0.9999 0.9999 1.0000 0.9009 0.9999 0.9999 0.9999 0.8824

steam 𝑡𝑎𝑐𝑐 0.9999 0.9999 1.0000 0.9399 0.9998 1.0000 1.0000 0.9999 0.9999 0.9999 1.0000 0.9253
production 𝑣𝑎𝑐𝑐− 0.9999 0.9999 1.0000 0.9223 0.9979 1.0000 1.0000 0.9754 0.9999 0.9999 1.0000 0.9183

𝑏𝑎𝑐𝑐− 0.9999 0.9999 1.0000 0.9311 0.9989 1.0000 1.0000 0.9877 0.9999 0.9999 1.0000 0.9218

The best models were determined using more decimal places than those shown.

Figure 7: Modbus-related model transfers: Detection capa-
bility (𝑣𝑎𝑐𝑐) of models trained on the indicated dataset and
applied to the validation sample sets of the other Modbus
datasets.

potential on the protocol mix similarity of the source and target
network could not be observed.
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Table 15: Ensemble detection results (in%): Validation accuracy (𝑣𝑎𝑐𝑐), false classifications (F) and false positives only (FP) if
anomaly prediction relies on at least one (1/4), two (2/4), three (3/4) or four (4/4) anomaly predicitions from the single models.

flow samples packet samples 3-packet samples

1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4

Lemay 𝑣𝑎𝑐𝑐 99.77 94.77 79.79 72.37 94.51 93.77 55.16 52.90 97.75 97.05 95.20 91.61
F 0.45 0.53 0.73 0.69 3.21 3.59 24.28 25.45 2.77 1.98 2.92 4.84
FP 0.45 0.45 0.41 0.24 0.40 0.35 0.08 0.00 2.48 0.57 0.45 0.37

WDT 𝑣𝑎𝑐𝑐 83.39 84.62 84.67 84.68 75.22 75.24 75.31 75.81 75.99 75.89 72.03 71.75
F 16.71 15.54 15.49 15.48 20.62 20.59 20.48 19.68 19.81 19.59 22.65 22.86
FP 2.96 0.21 0.04 0.01 1.76 1.72 1.55 0.33 1.18 0.25 0.05 0.00

DNP3 𝑣𝑎𝑐𝑐 88.43 86.65 80.78 82.12 59.56 92.36 73.56 54.67 58.49 95.10 89.26 78.35
F 22.28 13.62 8.81 6.25 80.28 4.29 2.45 0.68 77.31 2.62 1.18 0.86
FP 22.28 13.14 7.69 5.13 80.28 4.20 2.08 0.02 77.24 2.51 0.89 0.23

S7comm 𝑣𝑎𝑐𝑐 99.20 99.60 100.00 100.00 69.29 99.16 99.35 50.00 96.07 98.83 97.90 92.97
F 1.47 0.74 0.00 0.00 38.74 1.05 0.63 36.91 1.97 1.20 3.02 10.58
FP 1.47 0.74 0.00 0.00 38.74 1.05 0.37 0.00 1.88 0.27 0.08 0.02

DMZ 𝑣𝑎𝑐𝑐 92.23 100.00 100.00 100.00 96.83 99.84 99.99 100.00 84.24 98.96 99.99 100.00
F 7.76 0.00 0.00 0.00 3.17 0.16 0.00 0.00 15.76 1.04 0.00 0.00
FP 7.76 0.00 0.00 0.00 3.17 0.16 0.00 0.00 13.06 0.00 0.00 0.00

plant 𝑣𝑎𝑐𝑐 95.07 99.92 100.00 100.00 89.87 100.00 100.00 100.00 86.93 99.99 99.99 100.00
control F 4.93 0.07 0.00 0.00 10.13 0.00 0.00 0.00 13.06 0.00 0.00 0.00

FP 4.93 0.07 0.00 0.00 10.13 0.00 0.00 0.00 15.76 1.04 0.00 0.00

steam 𝑣𝑎𝑐𝑐 92.23 99.98 100.00 100.00 97.54 99.79 100.00 100.00 91.83 99.99 100.00 100.00
production F 7.76 0.01 0.00 0.00 2.45 0.20 0.00 0.00 8.17 0.00 0.00 0.00

FP 7.76 0.01 0.00 0.00 2.45 0.20 0.00 0.00 8.17 0.00 0.00 0.00

Table 16: Efficiency: Packet sample processing times in milliseconds with real-time processing load in % and the sample number
that could be processed on top (positive value) or exceed the detection speed (negative value).

training validation

sampling fitting pred. pred. %load buffer/s

Lemay envelope 0.2526 1.4356 0.2707 0.2687 0.62 3698
iforest 0.2523 0.3866 0.3110 0.3200 0.74 3101

OCSVM 0.2526 1.0065 0.2526 0.2675 0.62 3714
CAE 0.2526 0.8047 0.2668 0.2840 0.65 3497

WDT envelope 0.3066 6.9608 0.3104 0.3004 86.27 457
iforest 0.3061 0.5135 0.3793 0.3969 113.97 § -352

OCSVM 0.3066 1.2933 0.3066 0.2964 85.09 503
CAE 0.3066 0.8073 0.3248 0.3128 89.83 325

DNP3 envelope 0.2283 2.1934 0.2295 0.2275 0.41 4376
iforest 0.2274 0.2387 0.2340 0.2333 0.42 4268

OCSVM 0.2283 1.3284 0.2284 0.2264 0.41 4399
CAE 0.2283 0.7343 0.2445 0.2415 0.43 4122

S7comm envelope 0.3144 1.8438 0.3187 0.3126 1.75 3143
iforest 0.3144 0.4404 0.3627 0.3820 2.14 2562

OCSVM 0.3144 0.7576 0.3145 0.3115 1.74 3154
CAE 0.3144 0.9326 0.3310 0.3284 1.84 2988

DMZ envelope 0.5587 3.0171 0.5598 0.5840 83.12 289
iforest 0.5584 0.8902 0.7928 0.8139 115.79 § -194

OCSVM 0.5587 1.5457 0.5587 0.5829 82.97 292
CAE 0.5587 1.0155 0.5799 0.6029 85.77 236

plant envelope 0.5276 7.3354 0.5399 0.5469 2.19 1788
control iforest 0.5273 0.5770 0.5532 0.5706 2.28 1712

OCSVM 0.5276 1.1015 0.5276 0.5457 2.18 1792
CAE 0.5276 1.0262 0.5480 0.5624 2.25 1738

steam envelope 0.5592 2.1173 0.5650 0.5862 10.26 1531
production iforest 0.5592 0.6333 0.5918 0.6153 10.77 1450

OCSVM 0.5592 1.0793 0.5593 0.5849 10.24 1534
CAE 0.5592 1.1742 0.6071 0.6054 10.59 1477
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