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ABSTRACT
Replacing traditional vehicular components with electronic compo-
nents brings numerous benefits but also introduces new vulnerabil-
ities. To cope with this double-edged trend, we propose Context-
Aware Detection of abnormal vehicle Dynamics (CADD) in general,
or abnormal vehicle accelerations in particular. To account for the
limited data availability common in production vehicles, we propose
a new detection mechanism based on estimated vehicular contexts,
instead of the commonly used “predict-input-then-compare.” That
is, without relying on the unrealistically assumed availability of
detailed measurements for accurate behavior modeling and pre-
diction, CADD utilizes four sets of vehicle data to perform anomaly
detection by cross-validating estimations of the underlying driving
contexts, including road inclination, tire slippage, and total mass.
Our extensive evaluation with >87,000 test-cases has shown CADD
to achieve >96% recall and <0.5% false positive rate. Furthermore,
CADD can efficiently pinpoint the anomalous group of data with
>95% accuracy when the vehicle’s behavior deviates 0.07g (0.69
m/s2) from its normal pattern.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; Software and application security.
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1 INTRODUCTION
As we are entering the era of autonomous driving and vehicle elec-
trification, many vehicular components are getting replaced by their
electronic counterparts to provide advanced services, such as adap-
tive cruise control. While embracing the convenience brought by
the new technologies, there have been new vulnerabilities brought
by the electronic components like software bugs/glitches and cyber
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Figure 1: Functional overview of CADD.

attacks to the vehicles. Manipulation, injection, or spoofing of in-
vehicle data is shown to cause unexpected vehicle behavior [26, 41]
or even seize the control of a vehicle [30]. The consequences of
exploiting such vulnerabilities can range from confusing the driver
to jeopardizing the safety of driver/passengers.

To mitigate these risks, researchers have been exploring ways
of characterizing the normal vehicle behavior and then using it
to detect anomalous behaviors. Their proposed solutions can be
categorized according to the detection targets, as the detection of
Message Injection (MI) or Data Anomaly (DA). The former [3, 9, 34,
35, 52] — also commonly referred to as intrusion detection— focuses
on the detection of any (malicious) message injection into the in-
vehicle network (IVN). The latter [6, 10, 13, 17, 19, 20, 23, 32, 38, 39,
51, 53, 56] deals with the detection of anomalies observed in the data
level. Specifically, the former focuses on the detection of anomalous
MI on the IVN and can achieve high (> 97%) true positive rate (TPR)
and low (< 1%) false positive rate (FPR) in exposing the message
sent by a malicious/malfunctioning Electronic Control Unit (ECU),
but cannot detect/identify the condition in which only the vehicle
behavior or the data values in messages are changed.

On the other hand, the anomalies in data values are detected by
capturing inconsistencies between the data of interest. The corre-
lation (or causality) between in-vehicle data is modeled and then
an anomaly will be reported if the expected correlation between
the data does not hold. These approaches can detect the conditions
in which (i) the anomaly does not originate from the MI behavior,
or (ii) only the data value in a message is manipulated without
altering other message transmission characteristics. However, most
DA solutions have overlooked a common and crucial fact: detailed
in-vehicle measurements are usually inaccessible via in-vehicle
networks (e.g., wheel torque [23] and brake torque [10]). On the
other hand, those solutions that account for limited data availability
can at best achieve moderate performance (Section 2). Specifically,
there are three major technical challenges to overcome for efficient
detection of data anomalies.

C1: Diverse Operating Contexts. Production vehicles usually op-
erate in diverse environments with different contexts (e.g., road
conditions) and may not be equipped with all the sensors that can
detect such contexts directly — since those sensors increase cost
and are not required for vehicles’ basic operation. However, the
vehicle state depends strongly on its operating environment. For
example, the level of acceleration resulting from pressing a gas
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pedal at 50% level when the vehicle is traveling steep uphill, will
be much lower than that of traveling downhill or on a flat road.
Therefore, it is important for the system to estimate, and account
for the operating “context” for accurate detection of anomalies.

C2: Limited Data Availability. The availability of in-vehicle data
is often limited, and only coarse-grained or specific data can be
accessed/surfaced for the following reasons. First, the standardized
on-board diagnostic II (OBD-II) messages based on SAE J1979 only
cover the data types related to transmission. Second, CAN, the
de facto standard for in-vehicle communications, has only limited
bandwidth, i.e. 1Mbps and 5–12Mbps with a high-speed CAN [2]
and CAN-FD [1], respectively. Also, CAN is usually divided into
subnets with only certain necessary data being sent via a gateway
to other subnets. Utilization of detailed measurements that cannot
be acquired through standard OBD-II messages or a simple add-on
to the vehicle cannot be deployed without a structural change to in-
vehicle networks.1 This limited data availability is the very reason
why most, if not all, model-based detection schemes (e.g., [11, 40])
require their models to be re-designed for use in production vehicles
(Section 2), i.e., they were tailored to robotic/customized (instead
of production) vehicles.

C3: Training Difficulty. Due to customization, adjustment, or
varying error-tolerance of components in each vehicle, unified
model and parameters for vehicles with the same model/make to
work consistently are neither existent nor feasible. So, the system
must learn/estimate the vehicle’s normal behavior pattern based
only on partial/incomplete observable information (C1 & C2) for
anomaly detection. Also, the system must be able to work correctly
even when it encounters a situation never experienced before; train-
ing for all possible situations is impossible! The prior work relying
on previously observed data pattern (e.g., [27]) cannot work under
conditions not in their training scenarios.

In contrast to prior studies that focus on far-future or customized
deployment where either 1) limited bandwidth is not a problem or
2) detailed measurements are readily available, we propose Context-
aware Anomaly Detection in vehicle Dynamics (CADD), tailored for
production vehicles and those with limited data availability, that
verifies whether the controls from a human/autonomous driver
match their resultant vehicle dynamic/acceleration.

Fig. 1 shows the functional overview of CADD, which can be im-
plemented as a module in an ECU/Gateway connected to IVNs.
Specifically, CADD takes vehicle data as input, performs anomaly
detection followed by anomalous group identification (i.e., the pro-
cess for identifying potentially anomalous data), and outputs the
information of potential anomalous source(s) to the downstream
data-consumers. Example applications of CADD include i) an early
warning system (not for real-time defense) to notify vehicle owners
of potential system anomalies including faults and attacks for fur-
ther inspection, or ii) a tool for detecting data manipulation to cheat
on applications like usage-based insurance. CADD has the following
salient features:

P1:To facilitate ready-to-use and aftermarket solutions for OEMs
and third-parties,CADD does not require any modification to vehi-
cles to facilitate its deployment. In particular, CADD eliminates the
need of controller setpoint/output, commonly used/assumed in

1See Appendix-A for more background information.

prior work as input, for the detection of anomalies. That is, neither
detailed measurements (e.g., wheel/brake torque) nor vehicle param-
eters (e.g., gear transition curve) are required for CADD’s deployment
and the unknown characteristics of normal vehicle behavior con-
sidered in CADD can all be obtained during its training.

P2: CADD considers three fundamental contexts simultaneously —
road inclination (RI), tire slippage (TS), and total mass (TM) of the
vehicle including passengers and cargo — that influence a vehicle’s
longitudinal acceleration behavior regardless of how the vehicle
is maneuvered. While these contexts are by no means exhaustive,
they are known to be the most influential factors of a vehicle’s
behavior [22, 24, 25, 28, 29, 33].

Due to the lack of sufficient inputs, the common “predict-input-
then-compare” approaches (Section 2.3) require modifications to
i) their behavior prediction model to be applicable to production
vehicles and ii) their detection mechanisms to address prediction
uncertainties. Therefore, we propose a detection mechanism based
on context estimations. CADD estimates the (uncertain) context data,
instead of system dynamics, from four sets of data and then deter-
mines if there is an anomaly by checking whether the context esti-
mations are consistent with each other. That way, CADD i) eliminates
the requirement of knowing the correct context before performing
anomaly detection, ii) takes the operation context into account, and
iii) does not require a fixed set of trusted sources for its detection
(meeting C1 & P2). Context estimation further provides an adjust-
ment of threshold that directly maps to physical properties of the
vehicle operation.

Also, the normal operation models constructed by CADD are de-
scribed based on the commonmechanical design of modern vehicles
and the laws of physics. Therefore, only the vehicle’s (not the dri-
ver’s) behavior will be captured, enabling CADD to automatically
extend the thus-constructed models without requiring any actual
training under the exact same condition (meeting C3). Furthermore,
other than the optional input (i.e., brake), all required data can be
directly obtained from standard OBD-II or common CAN messages
on IVN (meeting C2 & P1)2.

This paper makes the following main contributions:
• A new design of anomaly detection based on context estima-
tion, instead of the common “predict-then-compare” of system
behavior (Section 4).

• Design of CADD for verifying the relationship between control
inputs and vehicle dynamics:
– Efficient models for capturing vehicle normal behavior and
context estimation (Section 5); and

– Mechanisms for detecting inconsistencies and identifying
anomalous sources/groups (Section 6).

• Demonstration of CADD’s performance via extensive evaluation.
It is shown to achieve >96% recall and <0.5% false-positive rate.
CADD efficiently identifies the anomalous group of data with
>95% accuracy (Section 7).

2Even if some data are not available on IVN, they can also be easily obtained by an
external IMU/device (e.g., an OBD-II dongle or smartphone).
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2 RELATEDWORK AND COMPARISON
2.1 Data Anomaly Detection
Since there already exist two comprehensive surveys [18, 55] of data
anomaly detection in general control systems, here we only discuss
the approaches in the vehicle domain or those directly related to
CADD. Prior related works can be categorized as fault detection and
isolation (FDI) [6, 19, 56] or anomaly detection (AD) [10, 13, 17,
20, 23, 31, 32, 38, 39, 44, 51, 53]. FDI focuses on the detection and
identification/isolation of the faulty source(s) while AD focuses only
on the detection of abnormal behavior caused by both component
failures and adversarial attacks.

The most common framework used in FDI describes the system
of interest using such techniques as Bond Graph [56], and formu-
lates the causal relationships between components as an equations
system. Each equation is an observer designed to capture specific
aspects of a failure. While treating the failures as unknown vari-
ables, the source of a failure can be identified/isolated efficiently by
solving the system equations [6, 19, 56]. In particular, FDI focuses
on modeling the interactions between components while requiring
detailed component design and architecture to function as specified.

On the other hand, AD exploits the correlation between data to
construct a normal behavior model for detecting anomalies. The au-
thors of [20, 32, 38, 39] focused on the detection of a vehcile engine
while Xi et al. [53] and Cho et al. [10] focused on the transmission
and brake system, respectively. While these studies focused on a
single functional group, Xue et al. [54] proposed a detection scheme
based on roll, steering and accelerating dynamics, and the authors
of [54] explicitly stated that some required input data (e.g., pitch
angular speed) are not commonly available in modern vehicles.
[31] and [44] focused on specific attack (e.g., replay, fuzzing, etc.)
types while their detection was designed to capture the features of
those attacks by introducing a “watermarked” input requiring ECU
modifications. Ganesan et al. [17] proposed an anomaly detection
system that covers multiple functional groups. They considered
pair-wise data correlation and used clustering to determine the
context (i.e., traffic pattern) for the detection of abnormal vehicle
behavior. Likewise, Guo et al. [23] proposed a detection system,
called EVAD, which is reported to achieve 98.8% TPR and 1% FPR
based on pair-wise correlation of detailed in-vehicle measurements.
However, some detection pairs in [23] also utilize data usually un-
available on IVNs, such as ⟨wheel torque, acceleration⟩ and ⟨brake
torque, brake pedal⟩. [51] proposed using neural networks to detect
anomalies in vehicle speed and engine rpm/torque. However, it is
reported to achieve only modest performance with <80% TPR and
>15% FPR in detecting anomalies. Dash et al. [13] proposed a detec-
tion system, called PID-Piper, based on a long short-term memory
(LSTM) learning architecture for control behavior monitoring.

2.2 Context Estimation
Since road inclination (RI) and tire slippage (TS) caused by insuffi-
cient road friction (RF) are very important for vehicle control sys-
tems to enhance system stability and reduce fuel consumption, sev-
eral approaches have been proposed for their estimation. Mangan et
al. [29] proposed a method utilizing a vehicle’s physical/kinematic
model to estimate RI based on the vehicle’s speed, acceleration,
brake pressure, and engine torque by computing the difference

between the expected acceleration on a flat road and the actual
measured acceleration. Mahyuddin et al. [28] proposed a method
that utilizes vehicle speed and driving torque, and adopts filtering
and adaptive observer techniques for the estimation. Jauch et al.
[24] proposed an IMU-based method for RI estimation. Specifically,
RI (𝜃 ) is estimated based on i) the difference between the measured
longitudinal acceleration (𝑎𝑋 ) and the derivative of the vehicle’s
speed (𝑣) relative to the ground:𝜃 = arcsin [(𝑎𝑋 − 𝑑𝑣/𝑑𝑡)/𝑔], where
𝑡 is time and 𝑔 is gravitational acceleration; and ii) altitude differ-
ence Δℎ (obtained from GPS) divided by the traveled distance Δℓ :
𝜃 = arcsin[Δℎ/Δℓ]. For pure RF estimation, Muller et al. [33] pro-
posed a slip-based approach to estimate themaximum friction when
the brake is pressed. Similarly to [24], the authors of [25] and [22]
utilized measurements of vehicle dynamics together with filtering
techniques to estimate RI and RF/TS.

2.3 Comparison of CADD and Prior Work
1) Data Requirement: CADD is designed for the prevalent case of

limited data availability to support ready-to-use and aftermarket
solutions. While the data commonly available on IVNs are control
inputs and dynamic measurements, the lack of final control output,
such as wheel torque, will make it ineffective/infeasible to apply
prior DA approaches including control/system invariant and resid-
ual design [5, 11, 16, 48]. Also, due to the nature of their design, the
aforementioned approaches focus on mechanisms inherently tied
to their required data, and hence there is no easy way to change
them without re-designing the entire system.

2) Detection Mechanism: Prior invariant/observer-based anomaly
detection mainly follows a “predict-input-then-compare" approach
that predicts some target data that is readily available as part of the
input data and then compares the received and the predicted data
values. For example, PID-Piper [13] predicts the controller input and
output (while both controller input and output are inputs to PID-
Piper) based on the model obtained from LSTM given the controller
output and input, respectively. Then, it reports an anomaly if the
predicted and the observed controller-inputs/outputs do not match
with each other when the cumulative sum (CUSUM) [11, 13] of
their differences exceed a certain threshold. The “predict-input-
then-compare" methods require detailed inputs for their prediction
models (e.g., wheel torque and/or brake torque [5, 11, 16, 48]), and
hence they either cannot be directly applied to production vehicles
due to insufficient input or can only achieve modest performance
if not all the necessary data are available (Section 7). In contrast,
CADD has a new detection mechanism based on context estimation,
tailored to operate with limited data availability as is commonly
the case. That is, instead of performing data prediction for existing
inputs as in the prior work, CADD divides its inputs into different data
groups so that anomalies can be detected by utilizing data groups
to cross-validate the same missing information, i.e., the context that
cannot be directly observed.

3) Context-Awareness: There is also no easy way to combine prior
detection and context estimation approaches to form a context-
aware anomaly detection because the latter usually assumes the
availability of detailed vehicle parameters and operation mecha-
nisms for the estimation system (e.g., gear and final drive ratio in
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(Arrow-1 & 5) with the environment, ECUs and their con-
nected sensors/actuators typically communicate via cyber
channels, such as cables or IVNs. The lightning icons are the
anomaly and attack interfaces covered by CADD (Section 3.2).

[29]). Since prior DA approaches do not consider context estima-
tion in the first place, they do not have any training mechanism to
obtain those parameters either.

Besides the availability of necessary data, a detection system
must also consider all three major contexts simultaneously. How-
ever, incorporating all three contexts in a detection system is not
as easy as including different CE approaches in the system. For
example, [25] can be used to perform RI estimation and detect
tire slippage while [28] focuses on the estimation of vehicle mass.
However, since [28] is not designed to operate when a tire slip-
page occurs, a combination of the two approaches cannot detect
anomalies when there is a tire slippage. Thus, prior CE approaches
cannot be applied directly to CADD for context estimation. As a re-
sult, instead of trying to utilize the models in prior CE approaches,
we develop behavior models to account for the effect of driving
context to address the aforementioned challenges. The proposed
models in CADD can not only capture the vehicle’s normal behavior
under different contexts but also be used to perform context esti-
mation. That way, all the necessary parameters can be obtained
from CADD’s training phase, facilitating its deployment.

3 DETECTION SCOPE AND THREAT MODEL
3.1 Detection Scope
We first introduce terminologies to be used throughout the paper.
We define the end-to-end (i.e., control-to-dynamics) acceleration
behavior of a vehicle as the vehicle’s behavior (VB). Let Data Of
Interest (DOI) be the data or measurements that CADD uses in its
anomaly detection, including:
• Major Detection Target (i.e., VB data):

– Control Input: gas pedal or throttle position (𝑔𝑎), brake pedal
position or master cylinder pressure (𝑏𝑟 ),3 gear level (𝑔𝑟 ), and
engine torque (𝑇𝑞 );

– Dynamics Measurements: longitudinal acceleration (𝑎𝑋 ), and
speed (𝑣);

• Assistance Data: vertical acceleration (𝑎𝑍 ) and a sensor for road
grade (𝜃𝑑 ) estimation, e.g., GPS (standalone or with maps) or
inclinometer.

Specifically, 𝑔𝑎 , 𝑇𝑞 , 𝑔𝑟 and 𝑣 can be extracted from standard OBD-
II messages [42] and the rest are commonly available on IVN in
3𝑏𝑟 is treated as optional since it is not included in the standard OBD-II message.

drive-by-wire vehicles [36]; otherwise, 𝑎𝑋 , 𝑎𝑍 , and GPS can also be
obtained from an external device like a smartphone. As mentioned
earlier, unlike prior work, CADD does not assume the availability of
the final system outputs/setpoints (e.g., wheel and brake torque)
since they are usually not available.

CADD is designed to detect VB anomalies in the data level (Fig. 2).
An anomaly (i.e., the detection target) considered in CADD is defined
as the occurrence of:
A1. (Physical Space) A change of the vehicle’s response to control

input that does not come from the change of driving contexts
(i.e., RI, TS and TM); or

A2. (Cyber Space) An inconsistency between the VB pattern and
the driving context in the data level.

For example, if the vehicle changes its acceleration due to an ab-
normal torque output from the engine, then it will be considered
as an anomaly. However, if the low acceleration is caused by driv-
ing on an uphill or slippery road, it would not be an anomaly. For
A1, longitudinal acceleration (𝑎𝑋 ) deviating by more than 𝑥𝑔 from
its normal value is defined as an anomaly, where 𝑥 is a design
parameter and 𝑔 is the gravitational acceleration. Similarly, input
information of road inclination (𝜃𝑑 ) deviating by more than𝑦◦ from
its ground truth is defined as an anomaly in A2, where 𝑦 is also a
design parameter related to 𝑥 (to be evaluated in Section 7).

3.2 Threat Model
In addition to component failures (the components with lightning
icons in Fig. 2) that fundamentally change the vehicle’s response
to control input (i.e., A1), we assume the adversary has the goal of
compromising the estimation/prediction of the vehicle’s state to de-
viate from its set course or waypoints and launches remote attacks —
those attacks not resulting from the adversary’s physical tampering
with the vehicle hardware. Some examples of remote attacks are i)
spoofing sensors (Arrow 1 in Fig. 2) with electromagnetic or acous-
tic interference [47] or ii) making ECU transmit incorrect dynamics
measurements or assistance data on IVNs (Arrow 3) by exploiting
bugs/vulnerabilities of ECUs via wireless connection [30].

CADD is designed to detect anomalies when not all status mea-
surements (i.e., dynamic measurements or assistance data defined
in Section 3.1) are compromised without knowing which data is
correct. Note that the above setting is a common requirement for
all data-driven approaches without modifying existing data trans-
mission. That is, there must be at least one degree of freedom (DoF)
in the target system that the attacker cannot fully control (i.e., can-
not precisely set the value of the manipulated data), where DoF
is defined as the number of data that cannot be determined by
another (set of) data and can only be obtained as control inputs
or measurements. Finally, CADD is also capable of identifying the
anomalous source in the presence of a component fault or a naïve
attack, where the anomaly source is limited to either VB or one of
the assistance data.

Specifically, this threat model assumes the adversary launches
remote attacks and represents a practical real-world condition (i.e.,
not able to fully control every DoF) based on the following facts.
First, while spoofing GPS is shown to be plausible from a distant
location, spoofing an accelerometer to generate a specific wave-
form (i.e., not random values) requires a learning process for phase
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tuning based on the feedback from the accelerometer itself [47].
That is, targeted manipulation of an accelerometer is proven diffi-
cult without direct physical access to the vehicle’s internal compo-
nents. Second, while prior work [30] only showcases the possibility
of data injection/manipulation through a single ECU attached to
the infotainment system, using a single ECU to mimic data trans-
mission of multiple ECUs can be prevented with MI approaches
[3, 9, 52]. Third, since most ECUs have limited communication ca-
pability, attackers must have physical access to those internal ECUs
to manipulate their core operation. Nevertheless, we still assume a
stronger attacker than the aforementioned attack examples to be
able to manipulate all data but one status measurement.

4 SYSTEM OVERVIEW
CADD’s basic operation consists of two phases: training and detection
(Fig. 3). During training, CADD captures a vehicle’s basic operation
of regular driving while there is no specific constraint on how the
vehicle should be maneuvered as long as 1) there is no (excessive)
tire slippage, and 2) the training phase includes different speed
ranges that the vehicle will normally experience. Ideally, this train-
ing needs only once for each car unless some physical modification
or maintenance is made to the car. The user can also configure
CADD to perform training periodically to account for component
aging/wear-out. However, it is the user’s choice whether to do so
since a positive detection reported by CADD can also be the indica-
tion that the vehicle requires a routine maintenance. The normal
VB can be described by two models, ℳ𝑔𝑏 and ℳ𝑡𝑔 . The former
captures the relationship between longitudinal acceleration and
the drivers’ control input (Section 5.2) while the latter captures
the relationship between longitudinal acceleration and the engine
torque (Section 5.3).

Fig. 4 shows the system structure for the detection phase — con-
text estimation and matching. CADD performs the anomaly detec-
tion by estimating the features of driving contexts (i.e., RI, TS, and

TM) and comparing them to check if they are consistent with each
other. What makes CADD special is that it utilizes those contexts that
cannot be directly observed as part of the detection mechanisms,
eliminating their uncertainty in modeling and even transforming
them into useful information for detection. Specifically, CADD first
assumes that all VB changes are caused by the road inclination
(RI). So, CADD estimates RI from four perspectives independently: (i)
the difference between measured (longitudinal) acceleration (𝑎𝑋 )
and expected acceleration based on gas/brake pedal position input
(𝑎𝑋,𝑔𝑏 ); (ii) the difference between 𝑎𝑋 and expected acceleration
based on engine torque and gear level (𝑎𝑋,𝑡𝑔); (iii) the difference
between measured vertical acceleration (𝑎𝑍 ) and gravity (𝑔); and
(iv) RI information provided by sensors, such as GPS/map. If these
four estimations of RI match each other, CADD will conclude that
the vehicle behaves normally. Otherwise, CADD will check further
if the change of the vehicle’s behavior is caused by the other two
contexts (i.e., TS and TM) or the combinations of the three contexts
by cross-validating the data.

If the anomalous behavior is determined not caused by any of the
contextual changes, CADD will report the detection of an anomaly
(along with the identified anomalous data/component group). The
choice of data utilized in CADD is based on their functional roles in
the speed control and their accessibility. We chose gas and brake
pedal positions as they are the direct inputs from the drivers.

5 NORMAL BEHAVIOR MODEL
5.1 Fundamentals of Vehicle Dynamics
In general, there are six types of forces that can directly influence a
vehicle’s acceleration (Fig. 5) [29]:
• Drive force (𝐹𝐸 ): force generated from engine torque (𝑇𝑞 );
• Brake force (𝐹𝐵 ): force generated from braking;
• Aerodynamic drag (𝐹𝐷 ): force caused by air resistance;
• Rolling drag (𝐹𝑅 ): force required for tires to roll passively;
• Normal force (𝐹𝑁 ): supportive force perpendicular to the con-
tact surface; and

• Gravitational force (𝐹𝐺 ): force caused by gravity.
Therefore, the vehicle acceleration a can be described by:

𝑚a = FE + FB + FR + FD + FN + FG + FO, (1)

where 𝑚 is the vehicle’s total mass, 𝐹𝑂 is the aggregated effect
from other minor factors, and the terms in bold fonts represent
vectors. If we look at the vehicle’s longitudinal direction (presented
by subscript 𝑋 ) and plug it in the detailed expression of each force
based on the available DOI of CADD, then, when |FE + FB | ≤ 𝜇𝐹𝑁 ,
Eq. (1) can be rewritten as:

𝑚 (Σ)𝑎𝑋 = 𝐹𝐸 − 𝐹𝐵 − 𝐹𝑅 − 𝐹𝐷 − 𝐹𝐺,𝑋 + 𝐹𝑂,𝑋

=
𝑇𝑞𝑖𝑔𝑖 𝑓

𝑅 (Σ)
𝑆𝐸 (Σ) − 𝑏𝑟𝑘𝑏 (Σ) (𝑣)𝑆𝐵 (Σ) − 𝑓(Σ)𝑚 (Σ)𝑔 cos𝜃

− 0.5 𝜎 (Σ)𝑐 (Σ)𝐴(Σ)𝑣
2 −𝑚 (Σ)𝑔 sin𝜃 +𝜓 (Σ) , (2)

where 𝜇 is the coefficient of friction between the tires and the road
surface, 𝑖𝑔 is the gear ratio, 𝑖 𝑓 is the final drive ratio, and 𝑅 is the tire
radius. 𝑘𝑏 is the braking coefficient (including the effect of slip ratio,
friction coefficient, etc.), and 𝑆𝐸 (𝑆𝐵 ) is the adjustment on 𝐹𝐸 (𝐹𝐵 )
due to vehicle steering. 𝑓 is the coefficient of the vehicle’s rolling
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Figure 5: Forces related to vehicle acceleration.

resistance. 𝜎 is the air density, 𝑐 is the vehicle’s drag coefficient, and
𝐴 is the vehicle’s cross-section area. Finally, 𝜓 is the aggregated
effect of other minor factors, and the terms with (Σ) indicate that
their values can be influenced by contexts not available to CADD
and may also include effects from steering as 𝑆𝐸 does.

Next, we introduce how CADDmodels VB without all the detailed
parameters in Eq. (2) while accounting for the reality of limited data
availability. Note that the unobservable adjustments/uncertainties
caused by (Σ) will be treated as (model) noise on top of their regular
patterns during run-time. However, they can be incorporated if they
become standardized data. To facilitate a more concise presentation,
we omit (Σ) in the following discussions.

5.2 ℳ𝑔𝑏{𝑔𝑎, 𝑏𝑟 , 𝑣, 𝑎𝑋 }
1) Model Formulation: ℳ𝑔𝑏 captures the relation between 𝑎𝑋

and drivers’ control inputs (i.e., 𝑔𝑎 and 𝑏𝑟 ). We first combine 𝐹𝐷 ,
𝐹𝑅 , and 𝐹𝐺,𝑋 together as:

𝐹𝑅 + 𝐹𝐷 + 𝐹𝐺,𝑋 = (𝑓𝑚𝑔 cos𝜃 + 𝜎𝑐𝐴𝑣2

2 ) +𝑚𝑔 sin𝜃 (3)

≈ 𝑓𝑚𝑔 + 0.5𝜎𝑐𝐴𝑣2︸              ︷︷              ︸
𝒯𝑅,𝐷 (𝑣)

+𝑚𝑔 sin𝜃︸   ︷︷   ︸
𝒯𝐺 (𝜃 ) .

(4)

We can make the approximation in Eq. (4) because tan𝜃 ≤ 0.07
according to the US government’s guideline for road construction
[4]. We then use this function form to present 𝐹𝐸 = 𝒯𝑇 (𝑇𝑞, 𝑔𝑟 ) and
𝐹𝐵 = 𝒯𝐵 (𝑏𝑟 , 𝑣). Since the engine torque (𝑇𝑞) is controlled by the
throttle while gear ratio is determined by the gear level (𝑔𝑟 ) which
is correlated with the vehicle speed (𝑣) and throttle position (𝑔𝑎), 𝐹𝐸
can be described by a function of 𝑔𝑎 and 𝑣 . Finally, we can obtain
the model formulation ofℳ𝑔𝑏 by plugging Eq. (4) into Eq. (2):

𝑎𝑋 =
1
𝑚

[𝒯𝑇 (𝑇𝑞, 𝑔𝑟 ) −𝒯𝐵 (𝑏𝑟 , 𝑣) −𝒯𝑅,𝐷 (𝑣) −𝒯𝐺 (𝜃 )] (5)

= ℋ𝑇 (𝑇𝑞, 𝑔𝑟 )︸       ︷︷       ︸
ℋ𝐸 (𝑔𝑎,𝑣)

+ℋ𝐵 (𝑏𝑟 , 𝑣) +ℋ𝑅,𝐷 (𝑣) +ℋ𝐺 (𝜃 ) (6)

whereℋ𝑖 is the aggregated effect of𝒯𝑖 on 𝑎𝑋 .
Note the formulation in Eq. (5) provides us the detection con-

dition when this physical modeling is used. First, other than the
control input and vehicle state, 𝜃 and𝑚 have direct impact on ve-
hicle acceleration. Second, 𝒯𝑇 (𝑇𝑞, 𝑔𝑟 ) and 𝒯𝐵 (𝑏𝑟 , 𝑣) are valid only
when |FE + FB | ≤ 𝜇𝐹𝑁 as mentioned in Section 5.1. The above two
characteristics are the reasons why CADD is designed to use RI, TS,
and TM for anomaly detection.

2) Training: To simplify the model training process, we divide
the ℳ𝑔𝑏 model into two submodels — ℳ𝑢 and ℳ𝑑 , where the

(a) (b)

𝑎! 𝑎!

𝑣 𝑣𝑔" 𝑔"
Figure 6: (a) The acceleration characteristics partitioned by 𝑣 .
(b) ℳ𝑢 ’s final model example.

former focuses on modeling the vehicle’s behavior when only gas
pedal is applied and the latter focuses on any other situation. Since
ℋ𝐺 is not dependent on any vehicle state, we can compute its
effect on 𝑎𝑋 by training on any road with a known slope. Also,
since modern automatic transmission is usually controlled based
on vehicle speed (𝑣) and throttle position (𝑔𝑎) [53], the aggregated
effect of ℋ𝑇 (𝑇𝑞, 𝑔𝑟 ) +ℋ𝑅,𝐷 (𝑣) = ℋ𝐸 (𝑔𝑎, 𝑣) +ℋ𝑅,𝐷 (𝑣) = Γ(𝑔𝑎, 𝑣)
can be obtained by only considering the training data when the
brake is not pressed. So, we can now express the simplified model
ℳ𝑢 as:

𝑎𝑋 = Γ(𝑔𝑎, 𝑣) +ℋ𝐺 (𝜃 ), if 𝑏𝑟 = 0. (7)

Training ℳ𝑢 is to identify Γ given the training data
{𝑔𝑎 [𝑡], 𝑣 [𝑡], 𝑎𝑋 [𝑡]}. Since the acceleration characteristics vary
with vehicles, we do not use a fixed model form to approximate
the function Γ. Instead, we model the VB based on the vehicle’s
speed. That is, we assign a function Γ𝑘 to describe the correlation
between 𝑔𝑎 and 𝑎𝑋 in each speed interval 𝑣 ∈ [𝑣𝑘 , 𝑣𝑘+1), where
𝑣𝑘 = 𝛿𝑣 × (𝑘 − 1) and 𝛿𝑣 is the size of each group (Fig. 6a). This
way, we can model Γ without committing to a specific model form
and achieve the flexibility of this approach. We set 𝛿𝑣 = 5km/h in
our implementation.

Since any function can be approximated by its Taylor series
expansion form, we use a polynomial approximation:

Γ𝑘 (𝑔𝑎 [𝑡]) = 𝑐𝑘,0 + 𝑐𝑘,1𝑔𝑎 [𝑡] + 𝑐𝑘,2𝑔2
𝑎 [𝑡] + · · · , (8)

where coefficients [𝑐𝑘,0, 𝑐𝑘,1, 𝑐𝑘,2, · · · ]𝑇 = ck are determined by
minimizing the loss function:

𝐿𝑘 = Σ𝑡𝑛𝑡0
(𝑎𝑋 [𝑡] − ck

𝑇Ga [t])2 + 𝜆 |ck |2, (9)

where 𝑣 [𝑡] ∈ [𝑣𝑘 , 𝑣𝑘+1), Ga [𝑡] = [1, 𝑔𝑎 [𝑡], 𝑔2
𝑎 [𝑡], · · · ]𝑇 , and 𝜆 is a

hyperparameter parameter for preventing overfitting. Fig. 6b shows
the final model form, where the lines are Γ𝑘 in the speed interval 𝑘 .

We use another training process to capture modelℳ𝑑 (i.e., VB
when the brake is applied):

𝑎𝑋 =ℋ𝑅,𝐷 (𝑣) +ℋ𝐸 (𝑔𝑎, 𝑣) +ℋ𝐵 (𝑏𝑟 , 𝑣) +ℋ𝐺 (𝜃 ) (10)
= Γ(𝑔𝑎, 𝑣) +ℋ𝐵 (𝑏𝑟 , 𝑣) +ℋ𝐺 (𝜃 ) (11)

Since ℋ𝐺 (𝜃 ) = −𝑔 sin𝜃 can be compensated by performing the
training process on a road with known inclination, the main idea is
to determine the parameter values under different speed conditions
by approximating Eq. (11) similar toℳ𝑢 :

𝑎′𝑋 = 𝑏𝑋,𝑜,0 (𝑣) +
𝑁𝑔∑︁
𝑖=1

𝑏𝑋,𝑔,𝑖 (𝑣)𝑔𝑖𝑎 +
𝑁𝑏∑︁
𝑗=1

𝑏𝑋,𝑏,𝑗 (𝑣)𝑏
𝑗
𝑟 (12)
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where 𝑎′
𝑋

= 𝑎𝑋 − ℋ𝐺 (𝜃 ), and 𝑁𝑔 (𝑁𝑏 ) are the orders of Taylor
expansion forms of Γ (ℋ𝐵 ). Theoretically, we can perform a similar
procedure of ℳ𝑢 to obtain the parameters. However, because the
duration of time the brake is pressed is usually only a small portion
of time during driving, the amount of total training data needed
to construct a usable model is huge according to our preliminary
experimentation. Therefore, we treat the parameters (𝑏𝑋 ’s) as func-
tions of 𝑣 to make up for the missing scenarios in the training data
instead of their direct training for every 𝑣 interval as inℳ𝑢 .

CADD partitions the data into small segments by a fixed time
window size (𝑇𝑤 ). For each segment, the next step is to perform
the ridge regression [7] to estimate 𝑏𝑋,𝑜,0, {𝑏𝑋,𝑔,𝑛}, and {𝑏𝑋,𝑏,𝑛} in
this segment:

b̂k = argminbk (𝑎
′
𝑋,𝑘 − bk

𝑇𝜔k)2 + 𝜆 |𝜔k |2, (13)
where 𝑘 is the index of the segment,
bk = [𝑏 (𝑋,𝑜,0,𝑘 ) , 𝑏 (𝑋,𝑔,1,𝑘 ) , . . . , 𝑏 (𝑋,𝑔,𝑁𝑔,𝑘 ) , 𝑏 (𝑋,𝑏,1,𝑘 ) , . . . ,

𝑏 (𝑋,𝑏,𝑁𝑏 ,𝑘 ) ]
𝑇 , 𝜔k = [1, 𝑔𝑎 (𝑡𝑘,1), . . . , 𝑔𝑎 (𝑡𝑘,𝑁𝑇

), 𝑏𝑟 (𝑡𝑘,1), . . . ,
𝑏𝑟 (𝑡𝑘,𝑁𝑇

)]𝑇 , 𝑁𝑇 is the total number of data items in the segment,
𝑎′
𝑋,𝑘

= 𝑎𝑋,𝑘−ℋ𝐺 (𝜃𝑘 ), and 𝜆 is the regularization term. Finally, CADD
performs regression again with ⟨𝑣𝑘 , b̂k⟩ to identify the mapping
from speed to the values of parameters.

Note that our implementation usesℳ𝑢 to model the VB when
only the gas pedal is pressed, and usesℳ𝑑 for other situations. This
design is based on the fact that the formulation of ℳ𝑢 can capture
more detailed acceleration behavior resulting from the pressing of
gas pedal thanℳ𝑑 .

One of the most important characteristics of approximation with
the Taylor series expansion forℳ𝑢 andℳ𝑑 is that Eqs. (9) and (13)
can be directly solved by ridge regression [7]. Also, according to our
testing, a 3rd-order approximation with 𝜆 = 1 can already achieve
significantly more accurate RI estimation (only -0.08◦ median error
and 1.09◦ absolute average error) than GPS (≥ 14◦ as will be shown
in Section 7.1). While the detection capability of CADD is bounded
by the largest contributor of the estimation error, CADD does not
make any noticeable performance gain by increasing the order of
approximation beyond 3.

5.3 ℳ𝑡𝑔{𝑇𝑞, 𝑔𝑟 , 𝑣, 𝑎𝑋 }
1) Model Formulation: ℳ𝑡𝑔 captures the relation between engine

output and 𝑎𝑋 . When the brake is not pressed, the formulation can
be directly obtained from Eq. (2) as:

𝑎𝑋 = ℋ𝑇 (𝑇𝑞, 𝑔𝑟 ) +ℋ𝐷,𝑅 (𝑣)︸                      ︷︷                      ︸
ℋ𝑇 ,𝑔𝑟 (𝑇𝑞 ,𝑣)

+ℋ𝐺 (𝜃 ) (14)

whereℋ𝑇,𝑔𝑟 is the aggregated acceleration component contributed
by engine torque at gear level 𝑔𝑟 .

2) Training: Training ℳ𝑡𝑔 is equivalent to identifyingℋ𝑇,𝑔𝑟 for
each gear level. We can further expressℋ𝑇,𝑔𝑟 as:

ℋ𝑇,𝑔𝑟 (𝑇𝑞, 𝑣) = ℎ𝑔𝑟 ,0 + ℎ𝑔𝑟 ,1𝑇𝑞 + ℎ𝑔𝑟 ,2𝑣 + ℎ𝑔𝑟 ,3𝑣2 . (15)
Similarly to the training of ℳ𝑔𝑏 , we can utilize the ridge regres-
sion to obtain hgr = [ℎ𝑔𝑟 ,0, ℎ𝑔𝑟 ,1, ℎ𝑔𝑟 ,2, ℎ𝑔𝑟 ,3]𝑇 by minimizing the
following loss function:

𝐿𝑗 = Σ𝑔𝑟 [𝑡 ]=𝑗 (𝑎𝑋 [𝑡] − hj𝑇Y[𝑡])2 + 𝜆 |hj |2, (16)
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Figure 7: Example of tire slippage.

where 𝑗 is the target gear level and Y = [1,𝑇𝑞, 𝑣, 𝑣2]𝑇 .
CADD’s training complexity is𝑂 (𝑁 2), where 𝑁 is number of data

points with ≈40KB/minute (10Hz sampling rate).

5.4 RI Estimation based onℳ𝑔𝑏 and ℳ𝑡𝑔

Since we can separate the acceleration contribution of RI (i.e.,
ℋ𝐺 (𝜃 )) from other DOI in the model formulation (ℳ𝑔𝑏 and ℳ𝑡𝑔),
all CADD has to do for RI estimation is to compute the expected
acceleration (𝑎𝑋 ) based on DOI while assuming 𝜃 = 0, and take an
arc sine of the difference between 𝑎𝑋 and the received 𝑎𝑋 divided
by gravity:

𝜃 = sin−1 [(𝑎𝑋 − 𝑎𝑋 )/𝑔] . (17)

This estimation is valid only when TM remains the same as the
training phase, and there is no tire slippage. If TM changes, say
from𝑚 to𝑚′, the expected acceleration will need to be calibrated
by a factor of𝑚′/𝑚 to obtain the correct slope estimation (Eq. (2)).
If there is a tire slippage, the total force can be generated from
𝐹𝐸 and 𝐹𝐵 will be capped at 𝜇𝐹𝑁 . Therefore, pressing more gas
or brake pedal will not generate higher acceleration or decelera-
tion and this will lead to a larger/smaller RI estimation magnitude
than the actual value, depending on which control input is applied.
CADD utilizes this characteristic in its anomaly detection to identify
whether a TM change or tire slippage occurs by comparing the RI
estimations from VB models with that from vertical acceleration
(i.e., 𝜃𝑍 = cos−1 (𝑎𝑍 /𝑔)) and RI directly obtained from GPS/map
or other sensor (𝜃𝑑 ). Our preliminary evaluation shows thatℳ𝑔𝑏

and ℳ𝑡𝑔 are able to capture the vehicle behavior accurately and
produce RI estimation with merely 0.1◦ median error.

6 CONTEXT-AWARE ANOMALY DETECTION
6.1 Detection Procedure
As shown in Fig. 4, CADD first estimates RI utilizing the VB models
while assuming the vehicle is traveling without tire slippage and
the mass in the vehicle remains the same as the training phase. If
the estimated RIs do not match each other, CADD further looks into
the data to see if the inconsistency is the result of other contexts
or their combinations. Specifically, CADD first estimates the RI from
four perspectives (Section 5.4): i) 𝜃𝑔𝑏 fromℳ𝑔𝑏 , ii) 𝜃𝑡𝑔 fromℳ𝑡𝑔 ,
iii) 𝜃𝑍 from 𝑎𝑍 , and iv) 𝜃𝑑 from GPS/map (Block A in Fig. 4). If
the estimations match each other (i.e., maximum and minimum
differences of the estimations are smaller than a threshold 𝜂𝑅𝐼 ),
CADD will report the pass of verification and keep monitoring the
DOI. Otherwise, CADD looks further into whether it is the change of
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TM that leads to the inconsistencies of slope estimations (Block B
in Fig. 4). Note that 𝜂𝑅𝐼 is a design parameter that can be set by
developers according to their preference. We will discuss more on
𝜂𝑅𝐼 in Section 7.

As discussed in Section 5.4, 𝜃𝑔𝑏 and 𝜃𝑡𝑔 will be different from 𝜃𝑍
and 𝜃𝑑 if TM changes. However, 𝜃𝑔𝑏 and 𝜃𝑡𝑔 will match each other
since they are both estimated from the difference between 𝑎𝑋 and
𝑎𝑋 . Therefore, CADD utilizes this characteristic to check whether
{𝜃𝑔𝑏 , 𝜃𝑡𝑔} and {𝜃𝑍 , 𝜃𝑑 } form two separate groups to determine if
the mismatch of RI estimation is caused by TM change. Since a
mass change other than fuel consumption4 is not likely to occur
during a trip (i.e., from the vehicle starts moving to the vehicle
stops moving), CADD filters out the false-positives caused by the
mass change due to passengers and cargo by checking whether
the ratio (𝑎𝑋 −𝑔 sin𝜃 (𝑑 or 𝑍 ) )/(𝑎𝑋 −𝑔 sin𝜃 (𝑔𝑏 or 𝑡𝑔) ), which is the
mass ratio of the mass at the time of training to the current mass
derived from Eq. (17), remains at a constant level during a trip. Note
this filtering mechanism is an optional function since mass change
can also be an indication of system tampering.

If RI estimations fail to match TM change, CADD further deter-
mines if there are signatures indicating tire slippage (Block B2
in Fig. 4). Specifically, CADD checks if: i) |𝜃𝑍 − 𝜃𝑑 | < 𝜂𝑅𝐼 ; ii)
𝜃𝑔𝑏 , 𝜃𝑡𝑔 >(<) mean(𝜃𝑍 , 𝜃𝑑 ) when gas (brake) is applied; and iii)
𝑎𝑋 remains at the same level. These signatures are determined
based on the fact that tire slippage occurs when the friction be-
tween the tires and road surface cannot provide the force required
to perform intended acceleration. Therefore, the decrease of accel-
eration will make 𝜃𝑔𝑏 , 𝜃𝑡𝑔 to overestimate (underestimate) RI when
gas (brake) pedal is pressed. Meanwhile, |𝑎𝑋 | will be capped at 𝜇𝐹𝑁 .
Fig. 7 is an example of showing the signatures of tire slippage.

6.2 Identification of Anomalous DOI
Upon detection of an anomaly, CADD further determines whether
the anomaly is caused by the DOI related to VB itself or that used
to estimate the context. The output of this identification can be one
of the following four possibilities:
S1. 𝑎𝑍 is anomalous;
S2. The direct RI measurement (i.e., 𝜃𝑑 ) is anomalous;
S3. Vehicle behavior (VB) is anomalous; or
S4. All DOIs are potentially anomalous.

CADD identifies the source or the group of sources caused an anom-
aly by finding the outlier(s) in RI estimations. That is, CADD will
determine whether a set of DOIs is anomalous if the RI estimation
based on them deviates from other RI estimations by clustering.
Specifically, CADD sorts the four estimations based on their values
and computes the differences between the sorted values. CADD then
finds the largest difference between the sorted estimations and di-
vides the group into two subgroups. If there is one group (group
A) that only contains one estimation and the largest difference
between the estimations in the other group (group B) is less than
𝜂𝑅𝐼 , CADD will report that the DOI used to provide the estimation
of group A is the potentially anomalous source. For example, the
sorted estimations are 1,2,3 and 6◦. The differences between the
estimations are 1, 1, and 3. Since the largest difference is 3, CADD

4Negligible during a short trip. See Appendix-A for more on this.

will divide the estimations into two groups, {1,2,3} and {6}. Since
the maximum difference of the first group is 3-1=2≤ 𝜂𝑅𝐼=2 (i.e., the
estimations in this group match each other), CADD will determine
the DOI used to estimate 6◦ as anomalous. CADD also determines if
the two subgroups are {𝜃𝑔𝑏 , 𝜃𝑡𝑔} and {𝜃𝑍 , 𝜃𝑑 }, and if the differences
in each group are less than 𝜂𝑅𝐼 . If yes, CADD will conclude that VB
is anomalous (S3). If none of the aforementioned conditions can be
found (i.e., RI estimations are not consistent with each other at all),
CADD will determine that all DOIs are potentially anomalous (S4).

7 EVALUATION
7.1 Experimental Setup
We utilize both i) the data from real-world driving and ii) that
generated from CarSim [43] to perform two sets of evaluation.
While the first set of evaluation (𝐸1) assesses CADD’s performance
when it is directly applied to basic/lower-end commodity vehicles
with limited sensor support (i.e., only with GPS and accelerometer),
the second set (𝐸2) shows CADD’s real potential for advanced/higher-
end vehicles with access to more sensors and/or information (e.g.,
GPS/map or inclinometer).

1) Testing Scenarios (𝐸1). The first set of evaluations (𝐸1) uti-
lize 13 real-world driving traces we collected by OpenXC VI [37],
a commercial off-the-shelf OBD-II dongle. All data are retrieved
directly by using the OBD-II dongle without support from any ad-
ditional sensors, which represents a basic third-party deployment
scenario. One of these traces is used as training data and the rest
as testing data. The training trace consists of 5.1km driving data
in an urban area and the testing data include hilly/bumpy roads
in freeway, urban, and downtown areas with up to 3.7km (3.8min)
traveling distance (time) per trace. The vehicles are driven by 3
different drivers and the roads have up to 5◦ slope.5 As mentioned,
the vehicle data are directly read off from the CAN bus without
any additional information provided from other devices or cloud.
Therefore, the road slope (𝜃𝑑 ) required by CADD is computed based
on the GPS elevation measurements. Naturally, the detection gran-
ularity/threshold is bounded by the resolution of input data. Note
the elevation measurements from GPS only have coarse-grained
accuracy [45]. In the collected traces, the maximum resolution is
3.05m (10ft) and the update rate is ≈1Hz, which can cause up to
14◦ error to 𝜃𝑑 if the vehicle is traveling at ≥45km/h on a flat road.
Due to safety concerns, we did not manually induce tire slippage
for 𝐸1. Instead, we evaluate the scenarios with tire slippage in 𝐸2.

2) Testing Scenarios (𝐸2). 𝐸2 evaluation utilizes data from 𝐸1
with CarSim simulation. We chose CarSim because it can simulate
realistic vehicle behavior and road condition (e.g., auto-generated
pot holes or cracked/bumpy roads), and it is used by 7 major OEMs
for design testing [43]. It also allows us to adjust RI and RF without
relying on the weather or physical location of testing and, the most
important of all, we can test dangerous scenarios (e.g., experienc-
ing excessive tire slippage) without jeopardizing driver safety. We
use the driving profiles collected from 𝐸1 to create realistic driv-
ing behaviors and the vehicle are automatically controlled by the
route/speed setpoints based on CarSim’s sensor simulation. See
Appendix-C for test case examples.
5In addition to the driver, three traces have no passenger and others have 1 passenger
with a total of five ⟨driver, passenger⟩ combinations.
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Thresholds→ 𝐸1: 𝜂𝑅𝐼 = 7◦, 11◦, 14◦ 𝐸2: 𝜂𝑅𝐼 = 1◦, 2◦, 3◦
Data Unit Behavior/Data Deviation
Long. Acc. 0.01𝑔 5, 15, 20, 25, 30 5, 6, 7, 8, 9
GPS Slope ◦ 8, 10, 12, 14, 16 2, 2.25, 2.5, 2.75, 3
Vert. Acc. 0.01𝑔 1, 2, 5, 10, 50 1, 2, 3, 4, 5

Table 1: Testing scenarios.

Data Unit Magnitude of Manipulation or Deviation
Δ𝑎𝑋 0.01g 5 6 7 8 9 15 20 25 30
Δ𝑣 0.01kph 18 21 25 28 32 53 71 88 106
Δ𝑋 10−4m 25 29 34 39 44 74 98 123 147
Table 2: This table shows the maximum resulting effects (per
data sample taken at a 10Hz rate) of data-manipulation at-
tacks, where Δ𝑎𝑋 is the resulting effect magnitude, Δ𝑣 and
Δ𝑋 are the resulting (maximum) speed and location devia-
tion/errors perceived by the vehicle.

We created 10 testing elevation templates. Each template has
10 segments with various RI ranging from -5 to 5◦ slope (≈7%
grades, which is the maximum (urban) RI suggested in the road
design guideline specified in Table 8-1 of [4]). The length of a
segment projected on the horizontal plane is 250 to 1000m. For each
template, we further set the friction coefficient 𝜇 to 0.2–0.5, and 0.9,
thus creating a total of 50 RI–RF combinations as testing contexts.
Together with the driving profile captured in 𝐸1, we use CarSim for
vehicle simulation. The average length of testing data is 7.5km and
the traveling time is 7–8min per trace. The training data consists of
28.25km traveling distance and 41min traveling time on a separate
training map (flat road with 𝜇 = 0.9).

3) Noise Injection. To account for the worst-case scenario in
which the vehicle has poor sensing quality or is traveling on bumpy
roads (for 𝐸2), we tested the scenarios where there can be excessive
measurement (or environmental) noise by injecting AWGN noise
with 63% mean and 8% median error to the collected traces (more
details in Appendix-C).

4) Attacks. Since CADD neither combines consecutive results dur-
ing detection nor relies on specific attack patterns for its detection,
it is the deviation from the normal vehicle behavior (or data value)
that matters to CADD’s detection, not how the data (e.g., by which
interface) are manipulated/attacked in time domain. We consider
the cases where the vehicle behavior/acceleration (𝑎𝑋 ) and assis-
tance data (i.e., 𝜃𝑑 and 𝑎𝑍 ) can all be manipulated, and see if CADD
is still able to tell whether the anomaly is caused by the VB related
DOI or the incorrect input from other sensors.

We assume a strong attacker who can launch stealthy or small
enough attacks such that i) their manipulation levels are within
the common permissible error and ii) they can evade the detection
of prior approaches (i.e., with >7s detection latency in 𝐸1 when
Δ𝑎𝑋 = 0.3g or >1.7s in 𝐸2 when Δ𝑎𝑋 = 0.09g, where Δ indicates
the manipulation level). Table 1 lists the manipulation scenarios
and thresholds (𝜂𝑅𝐼 ) we tested for 𝐸1 and 𝐸2. We introduce attacks
to the test-cases by shifting the data to deviate from their ground
truths according to Table 1 in addition to measurement noises, i.e.
perceived value 𝑥 ′ = ground truth 𝑥𝑔𝑡 + noise 𝜙 + attack effect
magnitude 𝑥𝑎 . Therefore, the vehicle will have an incorrect knowl-
edge of its current state after an attack is launched. Note 𝑥𝑎 is the

resulting effect of an attack, which covers any attack types that will
change VB and are not only limited to spoofing 𝑎𝑋 measurement.
Table 2 further shows the attack’s effects on the vehicle’s percep-
tion of speed and location under different levels of manipulation
tested in this section. Specifically, even if we look at the maximum
𝑎𝑋 manipulation (0.3g), the attack will only generate a 0.0147m
location deviation and a 1.06 km/h speed deviation every 0.1s while
pure GPS localization is known to have meter-level error (4.9m [21])
and the European law (ECE-R39) only requires the speedometer to
report with 0.1𝑣𝐺𝑇 + 4 km/h error, where 𝑣𝐺𝑇 is the ground truth
of the vehicle speed.

For each scenario, we generate 50 (100) test cases for 𝐸1 (𝐸2)
where the data manipulation starts randomly and lasts for <1min
(1–5min), which is equivalent to an average of 63.9% (12.9–64.5%)
traveling time. Each test-case has a different combination of i) attack
target, ii) attack magnitude, iii) attack start time, iv) attack duration,
v) noises, vi) road grade & condition, and vii) ground truth behavior.

5) Detection Threshold. Detection threshold (𝜂𝑅𝐼 ) also defines
the minimum behavior change CADD is able to detect (Δ𝑎𝑋,𝑚𝑖𝑛):
Δ𝑎𝑋,𝑚𝑖𝑛 ≈ 𝑔 × 𝜂𝑅𝐼 . For example, Δ𝑎𝑋,𝑚𝑖𝑛 ’s of 𝜂𝑅𝐼 = 7◦, 11◦, and
14◦ are 0.12g, 0.19g, and 0.24g, respectively. However, setting a small
threshold is not always a good choice since it may induce more
false positives due to measurement noises. Specifically, CADD should
set 𝜂𝑅𝐼 to a value higher than the average difference/error between
actual road slope and the input slope data during the training phase.

6) Baseline Comparison. For baseline comparisons, we also
implemented EVAD [23] and PID-Piper [13], because, to the best of
our knowledge, EVAD is reported to yield the best performance and
covers the most similar data types as CADD while PID-Piper is the
state-of-the-art CI based on machine learning and can be adapted
to cover the same detection scope of CADD. For a fair comparison,
they have access to the same data types as CADD does, but they
cannot access those detailed data that are not commonly available
on in-vehicle networks.

While EVAD [23] has already covered similar data as CADD, we
implemented the correlation pairs in EVAD that cover the available
data listed in Section 3.1. For PID-Piper [13], its Feed-Forward Con-
troller (FFC) and Feed-back Controller (FBC) are both implemented
based on long short term memory (LSTM) machine learning as
in [13]. Specifically, the prediction output of FFC is the vehicle’s
acceleration (𝑎𝑋 ) while other available data listed in Section 3.1 are
treated as its input. Similarly, the prediction outputs of FBC are the
values of gas (𝑔𝑎) and brake (𝑏𝑟 ) pedals while other available data
are treated as FBC’s input.

7) Evaluation Metrics. We use the following metrics for evalu-
ating the detection performance of CADD.
• Detection Rate (True Positive Rate): the probability that the anom-
aly is successfully detected: TPR = TP / (TP + FN), where T (F)
is true (false) and P (N) is positive (negative).

• False Positive Rate: the probability that CADD identifies a normal
behavior as an anomaly: FPR = FP / (FP + TN).

• Detection Latency/Delay (DL): the time between the anomaly
occurs and the time CADD receives the first data sample that
triggers a positive detection. This metric tells us how long it
takes for CADD to detect an anomaly.
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Figure 8: ROC curves with 𝑎𝑋 manipulation in 𝐸1, where AUC
represents the area under the ROC curve.

Metric Δ𝑎𝑍 (g)
0.01 0.02 0.05 0.10 0.50

TPR (%) 10.39 27.47 72.82 74.70 74.22
FPR (%) 6.20 6.10 6.49 6.68 6.98
DL (ms) 16,204 56,66 2,495 2,311 2,759

Metric Δ𝜃𝑑
8◦ 10◦ 12◦ 14◦ 16◦

TPR (%) 8.18 12.94 32.04 54.87 70.40
FPR (%) 6.28 6.56 6.12 6.08 6.17
DL (ms) 17,780 14,948 9,418 7,148 6,530

Table 3: Performance when 𝑎𝑍 and 𝜃𝑑 is manipulated in 𝐸1.

Target 𝐴𝑐𝑐𝑖𝑑 𝐴𝑐𝑐𝑖𝑛 𝐴𝑐𝑐𝑖𝑑 𝐴𝑐𝑐𝑖𝑛 𝐴𝑐𝑐𝑖𝑑 𝐴𝑐𝑐𝑖𝑛

𝑎𝑋
Δ𝑎𝑋 = 0.05g Δ𝑎𝑋 = 0.15g Δ𝑎𝑋 = 0.20g
49.33 49.33 90.67 90.67 91.67 91.67

𝑎𝑍
Δ𝑎𝑍 = 0.01g Δ𝑎𝑍 = 0.02g Δ𝑎𝑍 = 0.05g
64.83 64.83 94.00 96.17 96.67 97.67

𝜃𝑑
Δ𝜃𝑑 = 12◦ Δ𝜃𝑑 = 14◦ Δ𝜃𝑑 = 16◦

30.83 30.83 66.33 66.33 76.80 76.80
Table 4: Identification performance in 𝐸1 (𝜂𝑅𝐼 = 14◦).

Note that we use a single data sample as a unit to compute TPR and
FPR, instead of using the entire trip/attack duration. Also, since
basic CADD does not combine consecutive detection results for its
anomaly detection, TPR also captures the probability of detecting
an anomaly with a single data sample. Thus, TPR and FPR of CADD
are independent of the attack duration/length.

For CADD’s identification performance, we use:
• Accuracy of Identification (𝐴𝑐𝑐𝑖𝑑 ): the probability of identifying
the exact group of anomalous DOIs.

• Accuracy of Inclusion (𝐴𝑐𝑐𝑖𝑛): the probability of classifying the
anomalous DOI group as potentially anomalous.

7.2 Performance in Traditional Vehicles (𝐸1)
1) Detecting VB Change. Let us consider CADD’s performance

when it is directly applied to modern vehicles. We use “Δ” in front
of a DOI to indicate the amount of manipulation/deviation applied
to that DOI/VB. While using 𝜂𝑅𝐼 = 14◦ and ≤1min data manipula-
tion as our main evaluation setting, Fig. 8 also shows the receiver
operating characteristic (ROC) when 𝜂𝑅𝐼 is set to 7◦ and 11◦. One

0 5 10 15 20 25 30
FPR (%)

0

20

40

60

80

100

TP
R

 (%
)

𝜂!" = 14
𝜂!" = 11 𝜂!" = 7

𝑐̅𝑐̅ − 2𝜎𝑐̅ − 6𝜎

[5,3]
[5,2]

[3,1.5]

0 5 10 15 20 25 30
FPR (%)

0

20

40

60

80

100

TP
R

 (%
)

0.25 g Manipulation (CADD)
0.30 g Manipulation (CADD)
0.25 g Manipulation (EVAD)
0.30 g Manipulation (EVAD)
0.25 g Manipulation (PIDPiper)
0.30 g Manipulation (PIDPiper)

CADD, AUC ~0.90
CADD, AUC ~0.92
EVAD, AUC ~0.77
EVAD, AUC ~0.78

0 5 10 15 20 25 30
FPR (%)

0

20

40

60

80

100

TP
R

 (%
)

0.25 g Manipulation (CADD)
0.30 g Manipulation (CADD)
0.25 g Manipulation (EVAD)
0.30 g Manipulation (EVAD)
0.25 g Manipulation (PIDPiper)
0.30 g Manipulation (PIDPiper)

PIDPiper, AUC ~0.87
PIDPiper, AUC ~0.88

Figure 9: ROC comparison between CADD and prior studies in
𝐸1, where the labels are the threshold settings of EVAD and
PID-Piper, 𝑐 (𝜎) is the mean (standard deviation) of correla-
tion coefficients of data pairs utilized in EVAD, and the tuple
([𝑥,𝑦]) indicates the number of standard deviations to report
(𝑥) and cancel (𝑦) an anomaly alarm in PID-Piper.

can observe that TPRs are always higher than 60% if the manip-
ulation is greater than the minimum detectable value derived by
the detection threshold. Even though 60% might seem to be under-
whelming, it is actually the result of using each sampling time as
one unit to compute TPR. Since CADD generates a detection result
every detection cycle, the definition of TPR presented here is equiv-
alent to the ratio of the number of cycles CADD correctly detects
an anomaly to the total number of cycles that a data manipulation
is active. If we directly examine whether a single session of data
manipulation can be detected before the session ends, there will be
0 false negatives, meaning that each and every manipulation can
be captured by CADD.

As mentioned in Section 7.1, since there can be ≥14◦ error when
GPS is used to provide 𝜃𝑑 information, we should set 𝜂𝑅𝐼 to be
≥14◦. With this setting, CADD achieved very low (∼6%) FPR while
achieving >80% (>60%) TPR in detecting 0.3g (0.25g) manipulations.
We will later discuss how to further reduce false-positives.

2) Detecting Anomalous Assistance Data. Table 3 shows the
results when 𝑎𝑍 and 𝜃𝑑 are under attacks with 𝜂𝑅𝐼 = 14◦. These
conditions can also simulate the situation when GPS or accelerom-
eter is spoofed by a malicious party. The TPR remains stable once
Δ𝑎𝑍 reaches 0.05g, indicating CADD’s capability of capturing data
manipulation consistently after this level. As mentioned before,
since we only have coarse-grained 𝜃𝑑 input in both temporal and
magnitude perspectives and the choice of threshold 𝜂𝑅𝐼 is bounded
by the error level of this input, CADD seems to yield lower TPR.
However, from the identification results in Table 4, CADD is shown
to be able to achieve an excellent identification rate even if the data
manipulation does not reach the theoretical detection level thanks
to the low FPR. Specifically, CADD is able to achieve 90.67 and 94%
rates of anomaly source identification (𝐴𝑐𝑐𝑖𝑑 ) when Δ𝑎𝑋 = 0.15g
and Δ𝑎𝑍 = 0.02g, respectively.6

3) Baseline Comparison.We now compare the performances
of CADD, EVAD, and PID-Piper (Fig. 9). CADD can achieve similar
or up to 21.5% higher (absolute) TPR with only half of EVAD’s
FPR. The lower TPR and higher FPR of EVAD are the results of
EVAD’s inability to account for the influence of context when de-
tailed measurements are not available. The results presented here
also showcase a major drawback of correlation-coefficient-based
approaches: they usually do not have any efficient threshold selection

6Modern sedans can achieve >0.5g acceleration (0-60 mph in 3.2s) [46].
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Scenario Δ𝑎𝑋 : Amount of Manipulation to 𝑎𝑋
0.05g 0.15g 0.20g 0.25g 0.30g

CADD (7◦ ≈ 0.12g) 2,576 901 417 376 361
EVAD (𝑐) 12,943 10,027 11,001 10,422 10,217
PIDPiper ([3,1.5]) 1,054 1,104 1,044 1,102 1,155
CADD (11◦ ≈ 0.19g) 6,282 4,272 1,652 977 559
EVAD (𝑐 − 2𝜎) 18,664 11,829 11,626 12,457 11,581
PIDPiper ([5,2]) 7,242 7,225 7,219 7,207 7,193
CADD (14◦ ≈ 0.24g) 18,076 6,573 5,571 2,171 1,628
EVAD (𝑐 − 6𝜎) 19,068 13,503 12,118 12,613 12,730
PIDPiper ([5,3]) 7,254 7,212 7,213 7,208 7,194
Table 5: Detection delay (ms) in 𝐸1. Note that some test cases
do not exceed the detection threshold (i.e., 𝜂𝑅𝐼 or Δ𝑎𝑋,𝑚𝑖𝑛).
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Figure 10: ROC curves without tire slippage in 𝐸2.

mechanism since correlation coefficients are not directly linked to any
cyber-physical properties of the vehicle system. That is, we cannot
adjust EVAD further to achieve a higher TPR or a lower FPR while
maintaining meaningful detection results (i.e., TPR > FPR). On the
other hand, PID-Piper is shown to achieve a similar TPR as CADD
(with a 5–10% difference depending on the settings). We would like
to stress again that CADD does not rely on consecutive results for its
detection, and hence its TPRs are equivalent to the probability that
CADD detects an attack based on one single data sample regardless of
how attacks/manipulations are launched in time domain. However,
because both EVAD and PID-Piper do rely on consecutive observa-
tions for their detection, their TPRs presented here are the best-case
performance when there is a persistent attack lasting for a certain
period of time (i.e., larger than their DLs). A further look at the
DLs in Table 5 reveals that they require more than 7s on average to
detect an anomaly while CADD incurs ≤20% of PID-Piper’s/EVAD’s
DL when considering the settings to achieve low FPR and Δ𝑎𝑋 ≥
0.25g. These results indicate that a short-lived attack (<7s) will have
a high probability to evade prior detections and showcase CADD’s
superiority to both.

7.3 Performance with 𝜃𝑑 Support (𝐸2)
We now explore CADD’s performance when more accurate inclina-
tion estimation 𝜃𝑑 is available (with <2◦ error) based on CarSim.
As mentioned in Section 3.1 and Fig. 4, 𝜃𝑑 does not have to be
obtained from the elevation data of GPS (as in 𝐸1). That is, it can
also come/computed from other available sensor data, such as i)
the combination of GPS and Map, ii) an inclinometer, or iii) LI-
DAR/camera as long as the inclination is not computed based on a
subset of other data groups in Fig. 4. For example, Wang et al. [50]
showed that Google Earth can achieve 1.32m mean absolute error

𝜂𝑅𝐼
Δ𝑎𝑋 : Amount of Manipulation to 𝑎𝑋

0.05g 0.06g 0.07g 0.08g 0.09g
1◦ 524 396 409 414 325
2◦ 1905 1034 802 745 620
3◦ 11597 2642 1908 1175 957

Table 6: Detection delay (ms) without tire slippage in 𝐸2.
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Figure 11: Comparison between CADD and prior work in 𝐸2.

in the US while Khalid et al. [14] showed that Google Earth can
achieve as low as 0.51m mean error in some specific regions (e.g.,
Dabaa City, Egypt), which can be translated to 2.7 and 1.05◦ error
when the vehicle is traveling at 100km/h and 1Hz update rate, re-
spectively. Commercial inclinometers are claimed to achieve 0.1–2◦
error [8, 12, 15] and slope estimation based on vision sensors (e.g.,
camera) is shown to achieve 0.2◦ error [49]. Even though the above
technologies may not be available to every car and everywhere on
earth currently, they indicate that a more accurate 𝜃𝑑 (than 𝐸1) can
be obtained for CADD to realize its true potential in future.

1) Without Tire Slippage. In 𝐸2, we use 𝜂𝑅𝐼 = 2◦ as our target
evaluation scenario based on the noise level observed in the training
data. Fig. 10 shows ROC curves when 𝜂𝑅𝐼 is set to 1 – 3◦ (marked
on each curve) and the curves indicate different levels of behavior
deviation. CADD is able to achieve a high TPR (75%) even if the
deviation (Δ𝑎𝑋 ) is only 0.05g and its FPR is only 4% (𝜂𝑅𝐼 = 2◦). Note
that we injected a large amount of noise (i.e., 13% of data have larger
than 50% noise in our test cases), which will inevitably generate
false positive detection. CADD can efficiently detect any behavior
deviation greater than 0.07g with 97% TPRwhile the mean DL is less
than 1s. Developers can plot the ROC curve (from the training data)
as a guideline for setting 𝜂𝑅𝐼 . For example, if we assume Fig. 10
were the ROC obtained from training phase and a developer wishes
to detect any behavior deviating from its norm by 0.06g with >60%
TPR and <2% FPR, then s/he should set 𝜂𝑅𝐼 to 3◦.

2) In the Presence of Tire Slippage. Let us consider CADD’s
detection performance in the presence of tire slippage (TS), sim-
ulating the vehicle traveling under different weather conditions
that can cause different levels of road friction. Table 7 shows CADD’s
performance when 𝜇 is set to 0.2–0.5 and 0.9, where 0.9 is the road
condition we used in Section 7.3.1. The average time of TS (in per-
centage of the entire trip) is also listed in Table 7. We can observe
that CADD’s performance is almost identical to the condition without
TS when there is no excessive TS during the trip (i.e., 𝜇 = 0.3–0.5).
Even when there is up to 34% of TS time (𝜇 = 0.2), CADD is able
to achieve ∼92% of TPR and only ∼7% of FPR when the Δ𝑎𝑋 =
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Metric Δ𝑎𝑋 : Amount of Manipulation to 𝑎𝑋
0.05g 0.06g 0.07g 0.08g 0.09g

𝜇 = 0.9 (No Tire Slippage)
TPR (%) 75.05 87.65 97.03 96.59 97.83
FPR (%) 4.02 4.24 4.53 4.60 4.67
DL (ms) 1,905 1,034 802 745 620

𝜇 = 0.5 (< 1% Slippage Time)
TPR (%) 74.90 87.63 96.98 96.36 96.12
FPR (%) 4.07 4.31 4.48 4.75 4.72
DL (ms) 1,680 1,124 895 746 771

𝜇 = 0.4 (< 1% Slippage Time)
TPR (%) 75.02 87.50 97.94 97.77 96.96
FPR (%) 4.09 4.34 4.61 4.61 4.78
DL (ms) 1,663 1,168 799 764 613

𝜇 = 0.3 (< 1% Slippage Time)
TPR (%) 75.11 87.48 97.07 96.97 96.68
FPR (%) 4.28 4.47 4.70 4.79 5.06
DL (ms) 1,608 1,032 863 712 786

𝜇 = 0.2 (5 ∼ 34% Slippage Time)
TPR (%) 68.27 80.39 91.88 93.49 94.09
FPR (%) 6.08 6.29 6.63 6.69 6.85
DL (ms) 2,027 1,663 1,315 1,226 998

Table 7: Detection performance in 𝐸2 (𝑎𝑋 anomalous).

1 2 3 4 5 6

2
4
6
8
10
12
14
16

CADD EVAD

0.05g
0.06g
0.07g
0.08g
0.09g

PIDPiper

𝜇 = 0.9 𝜇 = 0.2 𝜇 = 0.9 𝜇 = 0.2 𝜇 = 0.9 𝜇 = 0.2
Figure 12: Detection latency (s) of CADD and prior work when
Δ𝑎𝑋 = 0.05∼0.09g in 𝐸2. Accurate values in Appendix-C.

0.07g. That is, CADD is able to significantly reduce the occurrence
of false-positive detections (from potentially up to 34%) to only
7%. The slightly lower TPR than the scenario without TS (𝜇 = 0.9)
is due to TS’s cancellation of the effect of an 𝑎𝑋 change. When
𝑎𝑍 or 𝜃𝑑 is anomalous (Table 8)7, CADD is able to achieve almost
identical TPRs and FPRs with or without TS. That is, CADD is able
to distinguish TS from the actual anomaly and output the correct
results. Since CADD does not combine consecutive results for its
detection, the performance of traveling on a road with changing
𝜇 can be approximated by considering small road segments with
different 𝜇.

Next, we compare CADD’s FPR performance with EVAD by ad-
justing EVAD’s threshold settings to have the same level of TPR
as CADD (Fig. 11). Similar to the results shown in 𝐸1, CADD’s FPR is
only 34.5–38.5% of that of EVAD regardless of (non)occurrences
of tire slippage. For PID-Piper, it can only achieve <30.7% TPR
when having a similar FPR (∼4%) as CADD (Fig. 11). If we adjust PID-
Piper’s settings to achieve similar TPR (>90% when Δ𝑎𝑋 ≥ 0.07g)
as CADD, its FPR increases to >90%. Even for given special training
data with 10 different RI conditions, PID-Piper still suffers a 66.95%

7We omit the results when 𝜇= 0.3–0.5 in these two tables because they are almost
identical to 𝜇=0.9 as in Table 7.

Δ𝑎𝑍 (0.01g) Δ𝜃𝑑 (◦)
1 2 3 4 5 2 2.25 2.5 2.75 3

𝜇 = 0.9 (No Tire Slippage)
TPR 87.8 88.6 91.2 92.7 92.7 78.7 95.5 98.0 98.6 99.1
FPR 4.5 4.7 4.7 4.8 4.7 3.6 3.5 3.6 3.7 3.6
DL 7.38 7.54 7.21 7.41 7.44 0.79 0.26 0.07 0.08 0.02

𝜇 = 0.2 (5 ∼ 34% Slippage Time)
TPR 88.3 89.1 91.1 93.1 93.3 79.1 96.8 98.4 98.9 99.0
FPR 7.0 7.0 7.1 7.1 7.2 5.7 5.7 5.8 5.8 5.9
DL 7.58 7.16 7.32 7.71 7.47 0.57 0.15 0.09 0.07 0.06

Table 8: Detection results of 𝐸2 (𝑎𝑍 or 𝜃𝑑 anomalous), where
TPR, FPR, and DL are presented in %, %, and s, respectively.

Ano AD 𝜇 = 0.9 𝜇 = 0.2
Dev. Lvl. 1 2 3 4 5 1 2 3 4 5

𝑎𝑋

5 100 100 100 100 100 97.5 99.5 99.5 100 100
2.5 94.4 97.0 97.7 99.3 99.1 89.1 95.2 96.8 97.1 99.5
1 90.8 96.5 98.8 98.5 99.0 97.5 98.0 99.5 100 99.5

𝑎𝑍

5 100 100 100 100 100 98.9 100 100 100 100
2.5 100 100 100 100 100 91.8 92.2 93.2 93.0 90.0
1 97.5 95.8 98.5 94.8 96.0 62.7 62.5 67.5 68.2 62.0

𝜃𝑑

5 100 100 100 100 99.9 95.0 99.2 99.4 98.9 98.2
2.5 93.4 96.5 94.5 93.1 90.7 75.7 85.8 85.4 82.5 81.3
1 81.2 85.5 84.0 80.2 79.5 55.4 63.9 67.0 63.5 62.7

Table 9: CADD’s source identification results (𝐴𝑐𝑐𝑖𝑑 ) in 𝐸2. See
Section 7.3.3 for detailed description.

FPR. This result further shows a major drawback of a ML-based
approach without physical modeling: its detection will be ineffec-
tive when operating in a constantly changing environment because
of the training difficulty and the lack of necessary data access. On
the other hand, since CADD’s and EVAD’s detection is based on
the vehicle’s physical model and data correlation, there will be no
significant performance degradation under such a condition. Fur-
thermore, CADD is shown to achieve <51% of EVAD’s/PID-Piper’s
DL thanks to CADD’s model-based detection mechanism (Fig. 12).

3) Identifying an Anomalous Group. We now look at CADD’s
end-to-end performance in not only detecting the occurrence of
an anomaly but also pinpointing the anomalous group. First, we
consider the condition in which 𝑎𝑋 is anomalous as in Section 7.3.1.
We then test the conditions in which 𝑎𝑍 and 𝜃𝑑 are anomalous,
simulating the scenario that the sensor data used for context esti-
mations are faulty. The purpose of this evaluation is to see whether
CADD can correctly identify the group of anomalous DOIs. In this
evaluation, we set CADD to output an identification result when
each trip ends. This identification result is determined by taking the
majority of anomalous groups captured in the identification process
(i.e., S1–S4 in Section 6.2) within a single trip. Table 9 summarizes
the results of identifying an anomalous group. Since the results of
𝜇 = 0.3–0.9 are, in general, identical, we only present the results
of 𝜇 = 0.9 and 0.2 here. The “Ano” column is the anomalous DOI,
and the “AD” column is the anomalous duration in minutes. We
tested the cases with 1, 2.5, or 5min AD, which translate to 12.9,
32.3, and 64.5% anomalous duration ratio (ADR), respectively. The
second row (Dev. Lvl.) of the table indicates the level of deviation
(𝑘) from the ground truth. The actual deviation is given by Δ𝑎𝑋 =
[0.04 + 0.01k]g, Δ𝑎𝑍 = [0.01k]g, and Δ𝜃𝑑 = [1.75 + 0.25k]◦. While
|𝐴𝑐𝑐𝑖𝑛 − 𝐴𝑐𝑐𝑖𝑑 | < 0.1 holds for all the scenarios we have tested,
indicating the rare occasion of CADD’s inability to determine an
anomalous DOI, only 𝐴𝑐𝑐𝑖𝑑 ’s are shown here.
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When 𝜇 = 0.9 (i.e., without TS) and 𝑎𝑋 or 𝑎𝑍 is anomalous, CADD
is able to identify the exact source of anomaly with ≥94.4% 𝐴𝑐𝑐𝑖𝑑 if
𝐴𝐷𝑅 ≥ 32.3%. Even if 𝐴𝐷𝑅 = 12.9%, CADD can still achieve ≥90.8%
𝐴𝑐𝑐𝑖𝑑 . These results show CADD to be able to identify the anomalous
source even when the anomaly lasts only for 1 min (𝐴𝐷𝑅 = 12.9%).
Compared to the condition without TS, CADD has lower 𝐴𝑐𝑐𝑖𝑑 , es-
pecially in view of the performance when 𝑎𝑍 or 𝜃𝑑 is anomalous.
The lower 𝐴𝑐𝑐𝑖𝑑 is the result of CADD’s tendency to determine the
source of anomaly as 𝑎𝑋 when TS occurs. That is, CADD won’t be
able to distinguish whether the anomaly is caused by anomalous
𝑎𝑋 or the other two DOIs, and it will determine the source to be
𝑎𝑋 because Δ𝜃𝑔𝑏 and Δ𝜃𝑡𝑔 caused by TS will be larger than Δ𝜃𝑑 in
our testing scenarios, where Δ𝜃𝑋 is the deviation of estimation 𝜃𝑋
from the ground truth. Nevertheless, CADD is still able to achieve
≥75.7% 𝐴𝑐𝑐𝑖𝑑 when 𝐴𝐷𝑅 ≥ 32.3% and Δ𝜃𝑑 = 2◦.

4) Discussion.While most reported false-positives are caused
by transient noise, CADD’s FPR can be reduced further by a false-
positive filtering mechanism (FPFM) even though CADD can already
achieve low FPR under excessive noisy conditions. Specifically,
since any effective attack must last for a certain period of time to
pass through a low pass filter (i.e., a common practice of data/signal
processing), CADD can choose to report an anomaly detected only
when there are 𝛼 consecutive positive detections, where 𝛼 is a de-
sign parameter to balance between the FPR and the detection delay.
CADD is able to achieve merely 0.5% (1.0%) FPR and 96% (96.8%) TPR
when 𝛼 = 50 (30) even with excessive noise injected (See Appendix-
B for more analysis).

8 DISCUSSION
8.1 Environmental Influences and Latency
CADD’s detection performance is bounded by the quality of its sen-
sor measurement. More specifically, since CADD compares the RI
estimations from different data groups, the detection capability will
be bounded by data groups that generate the largest noise (e.g., GPS
in 𝐸1). This characteristic also indicates that the surrounding envi-
ronment can influence the CADD’s performance. For example, when
operating at a location with poor GPS accuracy, the data group
that utilizes GPS may be more unreliable than other data groups.
CADD may report a data anomaly for GPS even in the absence of an
actual attack. However, this detection can also be useful to let the
consumer of CADD’s results know that GPS is not reliable at that
moment and should not be used for making any critical decision.

Detection latency can also be affected by the data quality. For
example, in Table 3, it takes CADD ≈ 17.8s to detect a data anomaly
when Δ𝜃𝑑 = 8◦ while the normal operation can generate a 14◦
error. That is, any attack that stays below the normal error range
can take longer for CADD to detect. However, the vehicle control
should be designed to tolerate the error below its normal level of
error in the first place. Therefore, having a longer detection time
will not diminish the value of CADD in such a scenario. CADD in that
case acts as a data observer to alert users on potential minor data
anomalies.

8.2 Resiliency against Full-Scale Attacks
As mentioned in Section 3, CADD cannot detect a full-scale data
manipulation (i.e., all data are under the attacker’s control), which

is a common characteristic of all approaches without the data of
final control output/setpoint (or a trusted data source). However,
when map support is also available to the vehicle, a real-time full-
scale attack will be very difficult to evade CADD’s detection for the
following reasons. To generate a full-scale attack in real time, it
requires the attacker to change the road inclination context 𝜃𝑑
utilized by CADD to match other data after manipulation. With map
support, 𝜃𝑑 will not be directly computed based on the elevation
measurements embedded in the GPS data on IVN. Instead, CADDwill
use the geo-coordinates to look up 𝜃𝑑 on the map, meaning that the
attacker will need to find a series of geo-coordinates with exactly
same 𝜃𝑑 ’s that match the manipulated data (even if such a series
of geo-coordinates exists). The above observations indicate that
launching a full-scale attack requires careful planning and accurate
control over the data values, limiting the applicable scenario and
scalability of such an attack.

On the other hand, to launch a replay attack or a pre-computed
attack, unless every data in the beginning of the recorded trace used
by the attacker exactly matches every data of CADD when the attack
is launched, there will be value gaps between before and after the
replay attack is launched, thus leaving an obvious "footprint" of
data manipulation.

8.3 Steep Slope
While the approximation in Eq. (4) assumed that the road grade
or tan(𝜃 ) is usually less than 7%, what would be the impact of
this assumption if the vehicle runs on a steeper road of 40% grade
like in San Francisco? This steeper road grade will result in the
rolling drag 𝐹𝑅 to be overestimated by 7% ≈ 1 − cos(tan−1 0.4)
or up to 0.5◦ estimation error for RI with the rolling resistance
coefficient 𝑓 = 0.13 [29]. It also shows that CADD’s performance
(i.e., minimum detectable difference) is bounded by this estimation
error sin−1 [𝑓 (1− cos𝜃 )] in the case of steep roads. While the error
of this extreme example is already much smaller than the 14◦ RI
estimation error from GPS (𝐸1), improving our model to account
for steep roads is part of our future inquiry.

9 CONCLUSIONS
We have presented CADD, a practical vehicle anomaly detection
system that accounts for limited data availability. CADD utilizes 4
combinations of data for detection of context information and deter-
mines whether an anomaly has occurred by comparing the context
estimations. Our extensive evaluation (87,000+ test cases, includ-
ing trace- and simulation-based evaluations) has shown CADD to
achieve high (>96%) TPR and low FPR (<0.5%) even in the presence
of excessive measurement noise. CADD can also identify the anom-
aly source with accuracy of >95% even if the anomalous duration
is only 32.3% of the observation time (Δ𝑎𝑋 = 0.07g). Even when
compared to the prior work with the best reported performance,
CADD (without applying any false positive filtering mechanism) is
shown to achieve not only less than 40% of its FPR but also less
than 51% required time to report anomalies.
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