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ABSTRACT

Mobile phones connect to the Internet and receive phone calls us-
ing a cellular baseband chip. Basebands pose a substantial attack
surface, as they do not only process but also decrypt personal data.
Cellular attackers usually force a phone to connect with a Rogue
Base Station (RBS), e.g., to record identity information and loca-
tions, intercept or manipulate traffic, or execute arbitrary code by
exploiting vulnerabilities in the baseband stack. RBSes are stealthy,
as smartphones attempt to connect to nearby base stations and do
not display any indicators of compromise to the user. While their
detection with Software-defined Radios (SDRs) is possible, usability
and scalability are limited.

We research and expose the baseband interface on recent iPhones
for Intel and Qualcomm chips to detect RBS attacks. We integrate
these findings into a user-friendly app called CellGuard. Detec-
tion even works on non-jailbroken iPhones with the latest security
updates and Lockdown mode. We enhance detection by utilizing
Apple’s internal database with highly accurate cell tower informa-
tion and in-depth reverse engineering of Apple’s baseband interface
protocols to find further indicators of compromise. During multiple
weeks of evaluation, we collect data on various devices using Cell-
Guard and evaluate the results, along with measurements from
our own RBS setup. Our baseband analysis framework BaseTrace
will be helpful beyond RBS detection, as it can interact with the
baseband and decode any management information exchanged,
including satellite communication in the iPhone 15.

CCS CONCEPTS

• Security and privacy → Mobile and wireless security; Intru-
sion/anomaly detection and malware mitigation.
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(a) Summary. (b) Cell map. (c) Cell data.

Figure 1: CellGuard’s user interface.

1 INTRODUCTION

Smartphones and their permanent cellular connection are vital
to our modern lifestyle. The underlying technology evolved over
five generations, with significant security improvements added
over time. Due to lacking security measures, especially in older
standards still in use today, threats emerged that could affect the
users’ privacy and security [34]. Adversaries can set up an RBS,
also called an International Mobile Subscriber Identity (IMSI) or
Subscription Concealed Identifier (SUCI) catcher, which forces
nearby smartphones to connect with them. They collect the smart-
phone’s identifiers, link them with a person’s identity, and track
their location [19, 52, 63]. An RBS can launch more complex at-
tacks to execute arbitrary code on the connected smartphone’s
baseband [15, 31, 32, 40, 48, 49, 51, 81, 82, 85]. The security research
community is aware of such dangers. Researchers analyzed IMSI
catchers available for sale and proposed detection methods [63].

Despite this significant attack surface, there is no openly avail-
able approach for usable and scalable tooling to detect RBS-based
attacks. Methods requiring special hardware like SDRs are ab-
sent in most situations when RBS detection is needed [26, 57].
Detection algorithms within Android apps exist; however, they
lack essential metrics [63]. Since the study on these Android apps
was published, the core of the RBS detection of these apps stayed
unchanged, even though some user interfaces were slightly up-
dated [14, 17, 29, 72, 75]. Packet-based metrics, which are the most
effective for app-based approaches, exclusively work on rooted An-
droid devices—thus opening further security issues on the phones
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that users want to protect against attacks. No attempts have been
made to bring packet-based RBS detection to non-rooted devices.
None of these approaches, neither SDR-based nor app-based, sup-
ports detecting anomalous behavior in 5G.

We create CellGuard for iOS, adding significantly improved
detection capabilities through novel metrics and utilizing an Apple-
internal database of valid base stations. Analysis of low-level packet
information from the baseband works on non-jailbroken phones.
Screenshots in Figure 1 show the information CellGuard collects
about connected cells of nearby base stations. It supports the latest
iPhone 15, including 5G communication. We verified compatibility
down to the iPhone 6s for Qualcomm and Intel basebands, resem-
bling full support for nine years of iPhone generations.

Contributions. This paper makes the following contributions:

• We design and implement the iOS app CellGuard. Cell-
Guard verifies collected data with two novel approaches.
We evaluate CellGuard’s effectiveness in real-world tests
over multiple months.

• We retrieve cell information from the Apple Location Ser-
vices (ALS) database and compare its quality to openly avail-
able databases [54, 80]. Our analysis shows that both open
databases list many inactive cells while also missing a large
portion of legitimate cells. Thus, CellGuard’s RBS detection
accuracy improves tremendously by using ALS.

• We find multiple metrics indicating RBS presence contained
in Intel and Qualcomm baseband interface packets.

• We reverse engineer proprietary baseband interface protocol
extensions for iPhones with Qualcomm basebands and de-
velop the framework BaseTrace. It can interact with the iOS
baseband chips and create Wireshark dissectors for these
automatically.

• The CellGuard app integrates BaseTrace to decode Qual-
comm and Intel baseband interface packets on the go.

• We demonstrate BaseTrace is useful beyond RBS detection,
e.g., to decode satellite communication on the iPhone 15 [3].

• We provide a library to communicate with iPhone basebands
for further experimentation.

CellGuard provides a valuable step forward in mitigating RBS
attacks. While it cannot prevent these attacks from happening
per se, it uncovers when and where these attacks are happening.
Detecting unauthorized attacks against politicians, journalists, or
human rights activists enables these individuals to take further
action. Supporting the latest operating system updates is mandatory
for these at-risk users, as research prototypes running on rooted
devices would expose their phones to further attacks.

2 BACKGROUND ON CELLULAR SECURITY

We next detail typical attacker goals, the role of RBSes during
attacks, and possible mitigations in cellular networks.

2.1 Attacker Goals

Adversaries install RBSes to reach the following goals.

(1) Personal Information and Location Tracking. An attacker could
collect personal information, such as unique identifiers and location

Target DeviceRogue Base Station

Genuine Base
Station

Jamming

Figure 2: Attack vector of an active rogue base station. Attack-

ers can influence the received signal strength at the target

device through jamming.

information. E.g., an attacker could put up multiple RBSes to get
the location profiles of all nearby users.

(2) Traffic Interception and Manipulation. Base stations offer ac-
cess to Internet and telephony services. An RBS could be used for
Machine-in-the-Middle (MitM) attacks to intercept and manipulate
traffic. Phone calls and Short Message Service (SMS) are especially
at risk, as they lack further protection. Even Rich Communication
Service (RCS), the successor of SMS supported by Android and
iOS, lacks encryption in some implementations [25, 87]. Transport
Layer Security (TLS) secures most Internet connections, limiting
the potential impact of MitM attacks.

(3) Baseband Vulnerability Exploitation. An attacker wants to expose
as much as possible about their target. With modern encryption
widely used, another possibility to obtain this information is the
exploitation of vulnerabilities on a target device to exfiltrate this
data in decrypted form. Exploitation could result in information
leakage or even Remote Code Execution (RCE).

2.2 Rogue Base Station Functionality

The term IMSI catcher is often used synonymously for an RBS [63].
Some literature exclusively uses this term when only extracting the
IMSI [19, 58, 73]. We use the term RBS, which includes IMSI and
SUCI catching functionality.

RBSes listen passively to surrounding cellular network activity
and can actively impersonate genuine base stations (see Figure 2).
They usually trick target devices into initiating a connection with
them by advertising a stronger signal strength than all surrounding
cells of a given network [63]. Recent work shows that the latest
generation of smartphones still connects to 4G and 5G RBSes [60].
Modern smartphones will not necessarily reconnect to the strongest
signal. In this case, jamming a legitimate base station’s signal is
required to trigger a full network scan and reconnection attempt.
Real-world experiments show that all modern smartphones will
connect to an RBS with jamming [60]. Using CellGuard, we ob-
serve similar behavior, where iPhones even attempt to connect to
different mobile networks in case they lose connectivity to their
network provider.
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When connecting to an RBS, the phone will attempt to authenti-
cate, whichmight leak identity information (1). Once authentication
succeeds, the RBS acts as MitM, able to intercept and manipulate
network traffic (2), and obtain a larger attack surface for RCE (3).

2.3 Known Attack Vectors

Cellular standards have a troubled history regarding security. We
summarize relevant attacks leading to RBSes being a severe threat
to mobile networks and end-users.

Downgrade Attacks. Recent mobile standards have effective attack
mitigations in place. A circumvention method for these protections
is to selectively force their target devices to use the oldest generation
of insecure mobile 2G standards (downgrading) by jamming, e.g.,
other frequencies of standards from newer generations, allowing
them to gather more information [63]. Baseband stacks still support
2G by default and connect to those cells, even though it was disabled
in some countries [11]. Once 2G is deprecated, attackers might
attempt to downgrade to 3G, which still has fewer mitigations than
newer mobile network generations.

Missing Authentication and Integrity Checks. In 2G, only the User
Equipment (UE) is authenticated, not the network, allowing at-
tackers to impersonate existing network operators. Moreover, in-
tegrity protection is missing. These shortcomings allow for MitM
attacks [81]. Since 3G, authentication is mutual, meaning that the
network additionally is authenticated to the UE [19]. However, even
4G encrypts user data without integrity protection [68] and has
flaws in the authentication protocol [67].

Authentication with Roaming Partners. Roaming enables the usage
of the same cellular contract and phone number while traveling
abroad. A serving network different from their home network offers
them cellular services. The user is in a Visited Public Land Mobile
Network (VPLMN), but only their Home Public Land Mobile Net-
work (HPLMN) knows the pre-shared secrets required for successful
mutual authentication. In older generations, authentication of the
UE is delegated to the VPLMN. In 5G, the UE authentication is
always executed in the HPLMN [33, 39]. Either way, authentication
works transparently towards the UE, such that messages exchanged
are the same regardless of roaming. The core network takes care of
forwarding the respective requests.

An RBS collaborating with a malicious network operator with a
roaming agreement with the target’s home network can success-
fully authenticate [44]. An RBS can announce any country and
operator, also called Mobile Country Code (MCC) and Mobile Net-
work Code (MNC), tricking the UE into connecting to it but not
recognizing the roaming procedure in the background. However,
for successful authentication, the attacker might need to use the
correct MCC and MNC when requesting authentication vectors
from the HPLMN. They can hide this circumstance by overriding
the display name shown on the UE using Network Information
and Time Zone (NITZ), which is not part of the authentication
procedure and, thus, not authenticated by the HPLMN.

This type of attack is similar to attacks on TLS certification
authorities, allowing adversaries to issue valid certificates for any
server. In TLS, the public certificate portion is shown to the user. A
falsely issued certificate can be rejected through certificate pinning,

and it is generally possible to detect such attacks. However, in
cellular networks, roaming is mainly handled within the network
core, and end-users are not involved in making trust decisions.

Identity Information Leakage. 3G and 4G networks expose IMSI and
International Mobile Equipment Identity (IMEI) during authentica-
tion [19]. The latest generation of cellular standards, namely 5G NR,
tries to address such issues. Its Subscription Permanent Identifier
(SUPI) is comparable to the IMSI of former network generations. In
contrast, the mobile device encrypts it with the network operator’s
public key before sending it to a base station. The encrypted SUPI
is known as SUCI. The encryption scheme ensures that the SUCI is
unique for each transaction. These measures undermine the opera-
tion of traditional IMSI catchers in 5G Standalone (5G SA) networks.
SUCI catchers work in 5G SA networks and exploit weaknesses in
the SUCI scheme to test if a given SUPI is nearby [19].

Another possibility of leaking personal linkable information ap-
pears through the sheer nature of wireless signals. An attacker can
send silent SMS or hidden traffic over social networks while observ-
ing encrypted traffic sent over the air. If a victim is within the cell’s
location, correlated timings leak identities in 4G networks [73].

Firmware and Mobile Operating System Remote Code Execution.
Attackers aim at stealthy exploits, requiring no user interaction
while providing high reliability. Cellular baseband stacks pose a
huge zero-click attack surface, as they parse much information
directly on the baseband chip. Often, these are reliably exploitable
because baseband chips lack modern mitigations for performance
and cost reasons [15, 31, 32, 40, 48, 49, 81, 82, 85]. This enables an
attacker to access decrypted SMS and phone calls, and they can use
this as an entry point into the mobile operating system [42, 51].

2.4 Attacker Capabilities

Within the constraints of our attacker model, adversaries can estab-
lish an RBS. RBSes are sold as commercial products to various law
enforcement agencies and are easy to assemble with commercial
off-the-shelf equipment [22, 47]. We limit the scope to an adversary
with well-defined and limited capabilities. The attacker can block,
intercept, and modify signals sent over the air. It is not within the
attacker’s capabilities to physically access the target device and
modify it any other way except for over-the-air signals. We assume
that malware has not infected the smartphone beforehand.

Regular Attackers. We assume an attacker with a reasonable budget
to be an individual or a minor criminal organization. They can use
open-source software and publicly available attacks. The attacker
does not have any organizational influence on network operators.

(1) Personal Information and Location Tracking. Identity infor-
mation extraction can be achieved for 20 $ in 2G networks. IMSI
numbers, country, brand, and operator can be recorded with an
open-source project and a DVB-T stick [22, 58]. Attacks to observe
identifiers in 4G and 5G networks require more expensive SDR
platforms, e.g., the USRP B210, which costs 1800 $ [19, 73].

(2) Traffic Interception and Manipulation. MitM attacks are most
cost-effective when first performing a downgrade attack and then
using an open-source 2G base station [64, 76, 83]. Bypassing au-
thentication in newer network generations requires flaws in the
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authentication protocol. E.g., one setup exploiting such a flaw re-
quires two USRP B210 [67].

(3) Baseband Vulnerability Exploitation. Executing arbitrary code
on the target device is only possible with recent public exploits [40,
49, 85]. Due to coordinated disclosure, many devices are up-to-date
and not vulnerable to such exploits. Yet, there is a significant patch
gap; not all mobile devices receive firmware updates regularly.

State-sponsored Attackers. State-sponsored adversaries are effec-
tively not limited in budget and can coerce network operator collab-
oration within their jurisdiction. Additionally, they have all regular
attacker capabilities.

(1) Personal Information and Location Tracking. Tracking becomes
easily accessible to state-sponsored attackers when assuming their
collaboration with network operators.

(2) Traffic Interception and Manipulation. State-sponsored attack-
ers can join as roaming partners and redirect traffic, even in 5G
deployments. TLS limits lawful interception of network traffic.

(3) Baseband Vulnerability Exploitation. As state-sponsored at-
tackers can afford prices for baseband exploits on the market [88],
RCE becomes a realistic threat. We assume zero-days are only used
if the attacker cannot achieve the desired goals otherwise and only
after identifying a specific target.

2.5 Mitigation

The most effective mitigation is disabling 2G. This raises costs and
reduces the scalability of state-sponsored attacks, as they require
a more expensive radio setup and need access to the user-specific
key material. Android 13 and iOS 17 in Lockdown mode support
disabling 2G [59, 65]. 2G is still enabled by default, as most users
desire network coverage and emergency services over security.

Yet, more recent cellular network generations are not secure
against RBS attacks either. Especially state-sponsored attackers are
challenging to detect. Often, various heuristics are combined to gain
evidence. Previous studies outline approaches to defend against
RBSes, and we compare existing tools with CellGuard in Section 7.
Park et al. categorize them as follows [63]. App-based methods
use baseband debugging data to detect RBSes. They monitor the
parameters of the connected base station to find common patterns
employed by adversaries [23]. CellGuard belongs to this category.
Dedicated sensory devices solely focused on detecting RBSes enable
sensor-based detection methods. Multiple sensors installed at fixed
positions collaborate to identify threats [57]. Network operators can
introduce network-based detection methods as they already possess
data about their network’s status and base stations. They can use
this information to detect possible violations of their frequency
spectrum by RBSes, initiate legal action against responsible entities,
and try to block uncovered RBSes.

3 iOS BASEBAND EXPERIMENTATION

FRAMEWORK BASETRACE

We build the experimentation framework BaseTrace for Apple
devices with a baseband stack, such as the iPhone, cellular iPad,
and Apple Watch models. We focus on the following features:

• Support for all baseband chips used in Apple devices.
• Basic functionality is available on non-jailbroken devices.

• Interaction with the baseband chip, allowing to send custom
requests and receive responses.

• Integration into existing open-source tools, such as Wire-
shark and libqmi [53, 86].

• Extensibility for future use cases, including automated in-
tegration when Apple adds new cellular features, such as
satellite communication.

While we use BaseTrace for RBS detection, various other cellu-
lar security and performance research applications are achievable
with such a framework.

3.1 iOS Baseband Stack Architecture

Modern phones consist of various chips with different responsibili-
ties, which increases performance and reduces battery consumption.
Figure 3 shows the separation of the Application Processor (AP) and
the baseband chip. The AP runs the operating system and apps. The
baseband chip manages over-the-air communication and abstracts
details from the AP. E.g., the baseband chip forwards SMS to the AP.
There, the baseband daemon named CommCenter assembles SMS
fragments and then forwards the SMS to the Messages app. With
baseband chips getting more complex and customized for vendors,
so do the underlying protocols. They are usually highly sophis-
ticated and proprietary. The abstracted communication between
baseband chip and AP is proprietary. Older iPhones with Intel base-
bands use the Apple Remote Invocation (ARI) protocol [41]; iPhones
supporting 5G use the Qualcomm MSM Interface (QMI) protocol.
CommCenter, the central baseband daemon on iOS handling phone
calls and managing connectivity, parses both protocols.

3.2 Baseband Communication

ARI and QMI carry information that is useful for detecting RBSes.
Both protocols hold details about low-level network properties of
cells the phone connects to, including failed authentication attempts.
Understanding these protocols is essential to build CellGuard.

Baseband Debug Profiles. Apple provides baseband debug profiles,
increasing the log verbosity for baseband communication [5]. In-
stalling them on a device requires no jailbreak. They support various
hardware, including the AppleWatch and iPad.With a debug profile,
logs contain all ARI and QMI protocol message contents in hexa-
decimal form and properties describing the currently connected
cell. Logs can be captured live or retrospectively by creating a sys-
diagnose [10]. Debug profiles and logs enable baseband research
and CellGuard functionality on non-jailbroken devices.

Application Processor

CommCenter

Baseband

QMI
ARI

iOS RTOS

Telephony,
Data,

Satellite, …

Figure 3: Cellular baseband stack on Apple devices.
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Reverse Engineering Protocol Details. Protocol parsing is imple-
mented in CommCenter and shared libraries. Apple keeps the ARI
and QMI implementations closed-source. We reverse-engineer in-
ternals using the following approach. iOS processes use dispatch
queues to parallelize data-intense processing tasks. Using dynamic
analysis of dispatch queues with Frida on a jailbroken iPhone [6, 21,
66], we get backtraces of all queue handlers. They indicate which
functions might process packets. Then, we statically analyze these
functions with Ghidra and IDA Pro to determine their implementa-
tion details [1, 37]. Insights gained during reverse engineering on a
jailbroken phone are also valid on non-jailbroken phones.

Qualcomm MSM Interface. Qualcomm is the largest vendor of cel-
lular basebands by market share [43]. QMI uses a binary protocol
and transmits information in packets. The QMI protocol format
these chips use is publicly known and implemented, e.g., in the
open-source library libqmi [53]. Each packet consists of a header
followed by multiple elements of varying sizes. The headers define
the operation to execute upon packet reception.

QMI services bundle operations of a similar category with a
unique numeric identifier. One header field contains a numeric
value for the QMI service the operation belongs to [53]. Assign-
ing service names to their numeric identifiers allows us to under-
stand the capabilities of a baseband. libqmi includes short and
long names for some identifiers used by iOS, but not all. The
iPhone’s log shows short names for each QMI service. The library
libATCommandStudioDynamic.dylib contains functions that con-
vert service numbers to human-readable service names, specifi-
cally the functions qmi::asShortString(qmi:: ServiceType)
and qmi::asLongString(qmi:: ServiceType). Table 1 shows all
services implemented on iOS 18 beta 3.

Observing and injecting packets requires further understanding
of the underlying libraries. Previous research references the func-
tion QMux::State::handleReadData of the library libATCommand
StudioDynamic.dylib that handles incoming QMI packets [20].
We locate the function pci::transport::th::writeAsync of the
library libPCITransport.dylib, which sends outgoing packets.
When iOS sends outgoing QMI packets to the baseband, it invokes
this function with the packet’s binary data. By calling this func-
tion with Frida, we can send arbitrary QMI packets to the iPhone’s
baseband.

Apple Remote Invocation. Intel modems use the previously reverse-
engineered ARI protocol [42]. We intercept outgoing QMI and ARI
packets using the function writeAsync. Incoming ARI packets pass
the AriHostRt::InboundMsgCB function.

Cell Information. The CommCenter process parses and logs infor-
mation about the current cell, independently from the underlying
protocol. In addition to baseband interface packets, CellGuard
processes this information.

3.3 Interacting with the Baseband Chip

BaseTrace does not only allow passive packet inspection but also
active packet injection. These capabilities open BaseTrace for
further baseband security analysis.

Table 1: QMI services present as of iOS 18 beta 3.

# ID Full Name

0x00 ctl QMI Control Service
0x01 wds QMI Wireless Data Service
0x02 dms QMI Device Management Service
0x03 nas QMI Network Access Service
0x04 qos QMI Qos Service
0x05 wms QMI Wireless Messaging Service
0x06 pds QMI Position Determination Service
0x08 at QMI Access Terminal Service
0x09 vs QMI Voice Service
0x0A cat QMI Card App Toolkit
0x0B uim QMI User Identity Module
0x0C pbm QMI Phonebook Manager Service
0x1A wda QMI Wireless Data Administrative Service
0x22 coex QMI Coexistence Service
0x24 pdc QMI Persistent Device Service
0x28 787 QMI 5WI 787 Service
0x2A dsd QMI Data System Determination
0x2B ssctl QMI Subsystem Control
0x2C mfse QMI Modem File System Extended Service
0x30 dfs QMI Data Filter Service
0x52 ms QMI Media Service Extension
0xE1 audio QMI Audio Service
0xE2 bsp QMI Board Support Package Service
0xE3 ciq QMI Carrier IQ Service
0xE4 awd QMI Apple Wireless Diagnostics
0xE5 vinyl QMI Vinyl Service
0xE6 mavims QMI Mav 5WI Service
0xE7 elqm QMI Enhanced Link Quality Metric Service
0xE8 p2p QMI Mav P2P Service
0xE9 apps QMI BSP APPS Service
0xEA sft QMI Stewie Service

Extending libqmi for iPhones. We modify libqmi to interface with
outside programs over Unix Domain Sockets. Based on the findings
of Section 3.2, we use Frida to set up a bidirectional communica-
tion channel with the iPhone’s baseband. We connect both with a
Python script and thus can utilize libqmi’s command line client.
The client implements 94 state-retrieving operations, 22 of which
the iPhone’s baseband can successfully answer. This indicates that
libqmi features slightly differ from Apple’s implementation.

Apple-internal QMI Services. One operation implemented by the
libqmi client allows requesting all QMI services provided by the
baseband. The Qualcomm Snapdragon X55 baseband firmware in
the iPhone 12 mini implements 39 services, eleven of which are not
implemented by iOS frameworks parsing QMI. We successfully ver-
ify that we can address one of the services from our client and that
its answer is valid. In contrast, the X55 baseband does not provide
three services implemented by iOS. This service mismatch between
iOS and baseband could stem from the baseband chipset being an
off-the-shelf component developed by an external manufacturer
rather than Apple itself. We include a detailed service comparison
in Appendix D. As CommCenter is the same across all iPhones with
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a baseband1, including older versions of Qualcomm, the additional
iOS services could be legacy.

3.4 QMI Wireshark Dissector

The significant mismatch in services supported by iPhones versus
those implemented by public tools makes it difficult to understand
the meaning of many packets. We create a new Wireshark dissec-
tor that supports the Apple-internal services. Another Wireshark
dissector already supports ARI [42].

Automated QMIWireshark Dissector Creation. Wireshark is a packet
inspection tool supporting a wide range of packet formats [86].
We adapt an existing QMI Wireshark dissector for USB modems
to iPhones [61]. The dissector can parse all packets transmitted
during various activities but cannot translate most numeric message
identifiers or service identifiers to textual representations.

We add all known iOS QMI services to the dissector but rely on
libqmi data for message identifier translations. Therefore, we ex-
pand libqmi’s database of QMI messages with iOS-custom packet
data. All messages use the superclass MessageBase of the library
libQMIParserDynamic.dylib. By creating a Frida script that in-
tercepts the class constructors and prints their backtraces, we dy-
namically decipher the meaning of most QMI messages. Some QMI
packets are not parsed within the CommCenter process and instead
are sent to other processes. Using the ipsw tool [12], we analyze
cross-references between system libraries and uncover the pro-
cesses locationd and WirelessRadioManagerd. They also process
binary QMI packets.

To automate the packet extraction, we devise a message identifier
extraction workflow that extracts textual identifiers from iOS bina-
ries using a custom Ghidra plugin and converts them into libqmi
data.

Live Packet Capture. We provide three different approaches to feed
the iPhone’s QMI packets into Wireshark alongside the dissector.
Two approaches allow us to monitor live QMI packets by extracting
them with Frida or from the iPhone’s system log. We adapted them
from Kröll [41]. The third approach reads QMI packets from past
system diagnosis log archives. Both log-based approaches also work
on non-jailbroken devices.

Verifying New Features – Satellite Communication. The iPhone 14
lineup introduced the novel Emergency SOS via Satellite feature,
allowing users to dispatch emergency text messages and share their
locations over satellites [3]. The smartphone’s Snapdragon X65
baseband implements the lower layers of satellite communication.
A new QMI Stewie Service appears in the iOS 16 firmware. Stewie
is Apple’s codename for the satellite project [35]. We update our
Wireshark dissector using the message identifier extraction work-
flow to decode satellite-related QMI packets. Figure 4 shows an
excerpt of such a trace.

With this, we demonstrate the flexibility of BaseTrace and
its applicability for research on the latest baseband features. The
automatedWireshark dissector extractionmakesBaseTrace future-
proof, even if Apple introduced further novel protocols.

1A non-cellular version of CommCenter exists for certain iPads.

Figure 4: Wireshark showing a satellite transmission with a

filter for the satellite-related QMI service.

4 ROGUE BASE STATION DETECTION

We combine novel heuristics with heuristics proven effective in
prior work to detect abnormal characteristics of RBS. With this, we
overcome the limitations of previous app-based approaches [62]. In
contrast to the latest app-based detection for Android [72], Cell-
Guard supports both 5G networks and non-jailbroken devices.

The heuristics consume QMI & ARI packets and iOS-internal
property sets describing cells, also called cell measurements. Our
approach links the packets to cell measurements based on times-
tamps and allows for a live analysis of the combined datasets and
a retroactive scan. Multiple detection criteria rely on data queries
from Apple’s internal cell database ALS.

4.1 Detection Criteria for CellGuard

We detect RBSes by checking for their typical characteristics. Each
characteristic verification step outputs a numeric score. The com-
bined score of a cellular measurement ranges from 0 to 100. We
group cellular measurements based on their scores into three cate-
gories: suspicious (0-49), anomalous (50-94), and trusted (95-100).

Measurements are still trusted even when missing up to 5 points,
as some criteria can subtract a few points, such as the bandwidth or
distance calculation. E.g., evenwhen users connect to a genuine base
station, bandwidth might be lower in crowded areas, or location
measurements might be inaccurate. We thus reduce false positives.
If at least one primary detection criterion fails verification, the cell
is usually anomalous, and users should keep an eye on it. We cannot
determine with high certainty whether such base stations are a
threat or genuine. Suspicious cellular measurements identify RBSes
with a higher certainty as multiple major verification criteria fail.
We employ the following characteristics:

(1) Existence of Cell in ALS Database (20 Points). ALS is Apple’s
cell location database. All Apple devices query the database to
quickly determine an approximate location based on their currently
connected cell. We reverse-engineer its endpoint to check if a cell
exists in Apple’s database. This verification criterion is based on
the assumption that RBSes are usually active for a shorter period
than genuine ones to evade detection [63]. Consequently, they are
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more likely not to be included in Apple’s database or, even if so, are
quickly removed when they are no longer in operation. We award
the cell’s measurement 20 points if we receive a successful answer.
Otherwise, no points are awarded.

(2) Distance between ALS Cell and User Location (20 Points). If the
cell in question is present in ALS, the service returns the cell’s
approximate location. This verification criterion calculates the dis-
tance between the phone’s and ALS locations.We detect adversaries
cloning the identification of genuine cells present in Apple’s data-
base but locate their cloned cells far away from their genuine coun-
terparts. Phones perform a full re-authentication and expose their
identifiers when transitioning to a different cellular region, which
adversaries can exploit to capture personal information [63]. If a cell
is out of place, the likelihood of such an attack or a configuration
error by adversaries increases. We calculate a corrected distance
that accounts for inaccuracies of the measured and received loca-
tions and subtract the maximum range of a cellular tower, which is
around 75 km [74].

In our practical experiments outlined in Section 6, we find that
an iPhone’s location accuracy decreases, especially when moving
fast. This is a hardware-based limitation that we cannot overcome.
However, we can correct location inaccuracies when awarding our
score. Thus, depending on the user’s movements, we calculate a
percentage of how likely the cell’s location is fraudulent by dividing
the corrected distance by 150 km, a constant devised from practical
experiments. The awarded points result from a multiplication, with
the factors being the location’s genuine percentage and the crite-
rion’s maximum number of points (20). The following formulas
outline the score’s calculation based on the distance 𝑑 between the
phone’s locations and ALS’ location in meters, the user’s speed
𝑣user in meters per second, and inaccuracies Δloc from the ALS and
iOS locations in meters:

𝑟cell = 75 000m

Δspeed = (𝑣user × 3.6/2)1.1 × 1000m
𝑑corr = 𝑑 − 𝑟cell − Δspeed − Δloc

𝑝fraud = max (0,min (𝑑corr/150 000m, 1))
𝑠 = (1 − 𝑝fraud) × 20

(3) Comparison of Cell’s Frequency Channel and PID with ALS (8
Points). ALS responses include additional data, such as the cell’s
Physical Cell ID (PID) number and Absolute Radio Frequency Chan-
nel Number (ARFCN) for some LTE cells. If available, we compare
it to the observed cell’s attributes. The verification criterion awards
6 points if the correct ARFCN is set and 2 points for a similar PID.
We aim to detect unintended configuration errors that could expose
RBSes.

Additionally, state-sponsored attackers operating without per-
mission may exploit roaming (see Section 2.3). They can utilize
unusual frequencies to set up the cloned RBS so as not to interfere
with the operations of network operators. Our detection criteria
would notice such a discrepancy.

(4) Bandwidth (2 Points). RBSes with older SDR hardware may not
provide the full 20MHz channel bandwidth. Yet, genuine cells may
also decide to lower the channel bandwidth. Therefore, we limit

the impact of this verification criterion by awarding 2 points for
the full bandwidth of 20MHz, 1 point for all bandwidths equal to
or larger than 10MHz, and 0 points for all bandwidths below.

(5) Network Reject Packets (30 Points). When a UE tries to connect
to an RBS of a regular attacker that does not bypass the authen-
tication measures of newer network generations, the UE notices
this issue after a while and stops further connection attempts. A
smartphone’s baseband chipset notifies the primary application
processor about the rejection from the cellular network of the RBS.
QMI notifies the application processor about this with a dedicated
Network Reject packet. We search all recorded packets in the time
frame of a cell measurement for a packet of that type. ARI has
no dedicated reject packet. Instead, the reject reason is transmit-
ted within an IBINetRegistrationInfoIndCb packet. RBSes emit a
special pattern of two packets, one with the reject reason IBI_
NET_REGISTRATION_REJECT_CAUSE_FORB_PLMN (forbidden public
land mobile network) and the other one with the reason IBI_NET
_REGISTRATION_REJECT_CAUSE_INTERNAL_FAILURE, sent shortly
after another. If either the QMI packet or the two ARI packets are
present, this criterion awards 0 points, as this is a strong indication
for an RBS without authentication bypass measures as shown with
an evil twin RBS in Section 6. Otherwise, it awards 30 points.

(6) Signal Strength (20 Points). UEs connect to RBSes with a high
signal strength [63]. We extract the signal strengths measured by
the UE from QMI and ARI packets and calculate an average value
over the time frame the UE is connected to the cell under question.
QMI transmits different signal strength measurements for each
cellular generation, whereas ARI transmits abstract signal strength
and signal quality values that resemble percentages. If they are
above a considerable threshold verified in our lab environment
and usually only achievable by standing right next to a cell tower,
the verification criterion awards 0 points. Otherwise, it awards 20
points. Section 6 describes how we determine and evaluate the
threshold values.

4.2 Cell Location Database Comparison

A sender’s signal strength, the receiver’s sensitivity, and the prop-
agation properties of radio waves limit their reception radius. A
single cell in a cellular network transmits radio waves and, thus,
covers a specific geographical area with its signals. Phones use
this limitation as an advantage. They can quickly determine an
approximate location within the cell’s radius based on its unique
identification and independent of other technologies such as Global
Navigation Satellite Systems (GNSSes). Beforehand, other entities
must establish the relationship between the cell and its location.
Cell location databases store this relational information. To maxi-
mize their use, they should accurately represent the current state
of all cellular networks globally in service.

There are closed cell databases whose entire dataset has not
been published. E.g., each major operating system vendor (Apple,
Google, Microsoft) maintains its own cell database. None of them
provide an official endpoint to query cells from their database, as
the database is only intended for their devices. In contrast, open
cell databases provide their full dataset for download. The open
databases Mozilla Location Service (MLS) and OpenCelliD rely
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(a) OpenCelliD [80] (b) Mozilla Location Service [54]

Figure 5: Coverage provided by open cell location databases.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

USA

GER

KOR

JPN

IND

USA

GER

KOR

JPN

IND

Successful Query Rate (SQR)

D
at
eb
as
e
M
at
ch

Ra
te

(D
M
R)

SQR-to-DMR Plot

Mozilla Location Service
OpenCelliD

Figure 6: Correlation between SQR, DMR, and the country’s

number of cells (points’ diameter).

on crowdsourced data [54, 80]. Since they rely on voluntary data
donations, they lack significant coverage in some areas of the world
and contain outdated measurements.

Apple Location Services. Apple’s privacy policy for their location
services explicitly states that Apple devices query the company’s cel-
lular database to determine approximate locations and contribute
recent data [4]. iPhones communicate with the database’s end-
point at https://gs-loc.apple.com/clls/wloc. It is similar to
Apple’s Wi-Fi location database [79]. All requests and responses
start with Apple-custom binary headers, whereas the content is
encoded using the binary data interchange format Protocol Buffers.
Requests for cells use headers similar to Wi-Fi requests but with
different protocol buffer fields. The locationd process is the origin
of such requests and contains class structures that en- and decode
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Figure 7: The number of cells per database and year.

these fields. We extract them using the static code analysis tool
IDA Pro and build a Python client to request arbitrary cells from
Apple’s database. Our client can request cell and location data for
the cellular technologies CDMA, TD-SCDMA, GSM, UMTS, LTE,
and 5G. Each request contains a single cell, and if this cell is present
in Apple’s database, it returns location information for the cell and
up to 99 neighboring cells. If the cell is absent from the database,
the response only holds one invalid cell. In both cases, responses
contain coarse locations for up to twenty nearby cellular regions.
Invalid cell requests still contain a cell’s area code, allowing ALS to
answer such queries.

Evaluating Cell Database Coverage. The cell databases WiGLE, Cell-
Mapper, OpenCelliD, and Mozilla Location Service (MLS) contain
21.6M, 5.4M, 48.8M, and 9.9M cells, respectively [13, 16, 54, 80].
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Only the last two databases are open, i.e., distribute their full dataset.
However, they lack coverage in certain regions, such as Central
Asia and Africa.

We assume that the ALS data is up-to-date and accurate as it
includes contributions from up to two billion Apple devices [30].
Data from our multi-month real-world test of Section 6 supports
this assumption as ALS has a miss rate of cells ≤ 1.6%. In further
experiments, we find that new legitimate cells take multiple days
to end up in Apple’s database, making it effective for RBS detection
while considering recent changes.

We evaluate the quality of the two open databases OpenCelliD
and MLS in comparison with ALS by calculating their similarity
using our novel ALS client. Our experiment considers Germany,
India, Japan, South Korea, and the USA. It treats ALS as the ground
truth, i.e., considers all cells in Apple’s database active and those not
out of service. For each open database and country combination, we
sample 5000 cells based on the country’s MCC from the respective
database. Our client sequentially requests all 5000 cells from ALS
and counts the number of cells in Apple’s database. The number
of successful requests divided by the number of overall requests is
the Successful Query Rate (SQR). If the source-of-truth assumption
is valid, the rate shows to what extent the open database contains
out-of-service cells. A high value indicates a few inactive cells in
the database. ALS returns neighboring cells for each requested cell,
which we merge into a list and remove duplicates. The number of
intersecting cells between the resulting list and the open database
divided by the overall number of cells in the resulting list yields
the Datebase Match Rate (DMR). This rate shows how much the
open database lacks new or unreported cells. The higher its value,
the more cells the open database covers.

We conducted the experiment on November 24, 2023, with the
most recent database versions available. Figure 6 aggregates the ex-
periment’s results. The plot contains two clusters highlighting the
differences in the data characteristics of both databases. OpenCelliD
contains more cells than MLS in all selected countries, but fewer are
still active. In contrast, MLS contains fewer cells than OpenCelliD in
the selected countries, but more are still active. Approximately, MLS
and OpenCelliD contain around 15% and 72% inactive cells not
present in ALS, respectively, and miss around 22 % and 38 % of cells
contained in ALS. Figure 7 illustrates that the open databases lack
new contributions. Furthermore, old contributions are not purged,
especially from the OpenCelliD database. We manually verify this
for a site we physically visit and find that OpenCelliD contains
reported cells based on a single 10-year-old measurement, with
cells no longer existing. Both open databases lack a significant por-
tion of cells making up the networks in each selected country and
incorporate a non-negligible amount of cells that are out of service.
Therefore, we assume that ALS is the best free source available,
even though it is not a database we can download completely.

5 CELLGUARD IMPLEMENTATION

Users in the cross-hair of RBSes are often unaware they are un-
der attack [81]. We create an iOS app named CellGuard to raise
awareness about potentially dangerous base stations. Our app con-
tinuously records information about the phone’s location and its
connected cells. It combines the datasets and verifies them with

ALS. Then, it combines ALS results and low-level baseband infor-
mation to calculate a score defined in Section 4.1. If the verification
score is anomalous or suspicious, CellGuard alerts its user.

5.1 iOS App

We create the CellGuard iOS app that implements cell verification
according to the criteria in Section 4.1. Figure 8 visualizes the app’s
architecture. On non-jailbroken devices, it gathers cell information
from sysdiagnoses, while on jailbroken devices, all data is collected
live with two tweaks. In parallel, the app tracks the phone’s location
using the iOSCore Location framework. It stores both datasets using
iOS’ Core Data framework and links locations and cells based on
their timestamps. CellGuard verifies the combined dataset using
ALS and notifies users upon verification failures.

The app supports iOS 14 to 18 and is distributed with Apple’s
packaging format IPA. Users can install IPA files with TrollStore [28]
or AltStore [78] on all supported devices. We plan to release a ver-
sion for non-jailbroken iPhones on Apple’s App Store—currently,
a beta release is available over Apple’s TestFlight app. Since users
might not be familiar with RBSes, CellGuard has a detailed expla-
nation shown on installation (see Appendix A).

We implement the app using Apple’s Swift programming lan-
guage and large parts of its user interface with the company’s
SwiftUI framework. The iOS apps AirGuard [36] and SignalRe-
born [84] inspired elements of CellGuard’s design. The app’s user
interface consists of three tabs, Figure 1 shows two of them. In
the Summary tab, a green, yellow, or red risk indicator shows the
current risk level for the user at a glance. Below that, CellGuard
displays information about the connected cell. Users can open the
app’s settings, change its permissions, or export their collected data
for later analysis. The Map tab displays all cells received from ALS
and shows more information upon interaction with markers. An-
other tap on the information popup opens a new view with a map
showing the phone’s locations when connected to the cell, data
from ALS, and the ability to inspect individual cell measurements
and their scoring. Nearby cell markers form groups based on the
map’s zoom level. Figure 9 shows the app’s third Packets tab with a
local dissector. The packets can be filtered by different criteria and
are constantly updated.

Non-jailbroken iPhones (Sysdiagnose). Apple grants no permission
for ordinary applications to read advanced cell information or ac-
cess QMI and ARI packets. The user creates a sysdiagnose with a
baseband debug profile installed as a workaround [5]. Sysdiagnoses
are archive files meant to be shared with Apple to analyze bugs. The
archives include the system’s log data encoded with a proprietary
format. The baseband debug profile leads to QMI and ARI packets
being included in the sysdiagnose’s logs. CellGuard integrates a
sysdiagnose log archive parser to extract relevant information from
logs, as described in Section 3.2 [50].

CellGuard guides users through this process with verbose ex-
planations as shown inAppendix B andC. Upon sysdiagnose import,
CellGuard retrospectively parses and analyzes all information.
Sysdiagnoses contain information collected over up to three days.
How long a sysdiagnose reaches back depends on how many log
messages were created, their size, and further device-specific fac-
tors like disk space [9]. After 21 days, the debug profile expires.
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Figure 8: A data-flow diagram of CellGuard’s architecture.

Figure 9: CellGuard’s internal dissectors

for ARI and QMI.

CellGuard recognizes this and reminds the user to refresh the
debug profile.

Using sysdiagnoses, users of non-jailbroken iPhones with the
latest security patches and even with Lockdown mode enabled
can use CellGuard and regularly check if their phone recently
connected to an RBS. CellGuard regularly reminds them to import
new sysdiagnoses for scanning. We confirm that this approach
works up to the latest iOS version, which is iOS 18.0 beta 3 at the
time of writing this paper.

Jailbroken iPhones (Tweaks). Tweaks are small programs thatmodify
the default behavior of iOS and require a jailbroken iPhone to work.
We create two tweaks using the cross-platform build system Theos
to collect data consumed by CellGuard [24]. Both tweaks operate
on iOS 14 to 18 and attach to the CommCenter process.

The Capture Cells tweak collects iOS-internal data about all
cells an iPhone connects to. The function legacyInfo of the class
CTCellInfo returns properties describing the currently selected
cell. Our tweak intercepts the function’s invocations and caches
the captured cell data in a file. It exposes a TCP server on a lo-
cal port, which our iOS app uses to query the recent cell data. As
the CTCellInfo class is part of the high-level Core Telephony iOS
framework, the tweak supports iPhones with Qualcomm and Intel
basebands.

The Capture Packets tweak records all QMI and ARI packets ex-
changed between the iPhone’s baseband and its primary application
processor. It intercepts the invocation of functions transmitting and
receiving binary packets of both protocols. Section 3.2 describes
how we reverse-engineered iOS’ receive and transmit architecture
for QMI packets, while Section 3.2 outlines the relevant iOS func-
tions for ARI packets. The tweak encodes the binary packets and
additional metadata and stores both in a cache file. It exposes a
TCP server on the local port 33067, which our iOS app uses to
query the recent packets from the tweak. All iPhones supported by
CellGuard, starting with the iPhone 6s, use a baseband chipset
manufactured by Qualcomm or Intel. As the tweak supports both of
their baseband protocols, it can function on all iPhones in a similar
manner.

Mobile Packet Analysis. Anomalous actions and difficult-to-explain
baseband behavior might happen when researchers do not have
a laptop with Wireshark at hand. Thus, we integrate an ARI and
QMI dissector into CellGuard, as shown in Figure 9. The dissector
shows basic packet information for both protocols in a human-
readable format. The filter function allows users to search for spe-
cific packet types, enabling basic packet analysis directly on the
phone.

Data Export. Data collected can be exported into a human-readable
CSV format. Exported data contains connected cells, the cell cache,
locations, and all packets. With this information, retrospective data
analysis is enabled, independent of sysdiagnoses. E.g., researchers
can import baseband packets collected in the field into Wireshark
at home and perform a deeper analysis of the observed phenomena
in combination with the exact cell data recorded by their device.

Apple Location Services Integration. CellGuard queries ALS on
the go whenever a user encounters a new cell. Cells update regu-
larly, and so does the ALS cell database (see Section 4.2). Users can
manually re-run the verification of a potentially malicious cell in
CellGuard to see if any of the ALS metrics changed.

We decide against downloading the ALS cell database in its
entirety and caching it locally. However, that means that an iPhone
must have an Internet connection to complete a cell’s verification.
For devices running in jailbroken mode, this can delay notifications
about malicious cells if an RBS does not offer Internet services.
Requests to ALS use TLS, preventing an RBS from tampering with
the service’s response if offering Internet services.

5.2 Recommended Mode of Operation

CellGuard works on jailbroken and non-jailbroken devices. De-
pending on the user’s needs, both modes of operation have dif-
ferent advantages and disadvantages. In either case, CellGuard
only warns after a user connected to an RBS. Further actions are
left to the user—such as enabling flight mode or reporting illegal
surveillance.

Due to the limitations of openly available interfaces on iOS,
live analysis is only possible on jailbroken devices. When using
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CellGuard as a sensor for potential RBSes abuse, we thus recom-
mend using it on a jailbroken iPhone. CellGuard works on the
iPhone 7 and 8, which support the palera1n jailbeak [18]. Refur-
bished iPhones of these generations cost around USD 100. Thus,
CellGuard is an effective, portable, and affordable RBS sensor.

Most baseband attacks target specific users, so an RBS might not
establish connections to potentially jailbroken device models. Thus,
we recommend installing CellGuard to a user’s primary, non-
jailbroken device in Lockdown mode, with 2G disabled. The delay
in getting warnings about potentially malicious cells is higher. How-
ever, it still helps users to take further actions. On a user’s primary
device, when suspecting a compromised iPhone, they can proceed
with forensic analysis to extract further indicators of compromise.
Moreover, as many exploits are non-persistent, users can reboot
their iPhone [56]. However, rebooting an iPhone might remove
some indicators of compromise due to an exploit’s non-persistent
behavior. Which action is ideal thus depends on the user’s threat
model.

5.3 Privacy, Transparency, and Modification

CellGuard processes all data locally. Thus, the privacy-sensitive
location history and low-level baseband packet logs stay on the
iPhone. This differs from other iOS forensics solutions, which ex-
tract data from the iPhone to then analyze it on an external PC
or in the cloud [38, 55]. Furthermore, CellGuard automatically
deletes privacy-sensitive location and packet data after three and
seven days, respectively. Users can adjust both retention periods in
the app.

CellGuard is open source, which allows users to verify Cell-
Guard’s cell measurement algorithm and make adaptions for other
metrics. In particular, technically experienced users can tune the
classification parameters. Free Apple developer accounts support
all permissions required by the iOS app [7]. Anyone with an Apple
ID and Xcode can modify CellGuard to their needs.

6 CELLGUARD EVALUATION

We evaluate CellGuard on ten datasets collected on five iPhones,
three with Qualcomm and two with Intel basebands. They col-
lected data while accompanying us on our daily trips in the pre-
vious months through six European countries. Within Germany,
the iPhone connects to the two major German cellular networks of
Deutsche Telekom and Vodafone, and outside to their local roaming
partners.

iPhone Location Accuracy. Early CellGuard prototypes incorpo-
rated amore straightforward threshold-based criterion for verifying
the distance between a phone and ALS location, which considered
inaccuracies introduced by both. We noticed that the app generated
numerous false positives during initial field tests. These stemmed
from the iPhone’s location being inaccurate in the range of up to
tens of kilometers, especially when traveling at speeds of 130 km/h
or above. This inaccuracy propagated into the cell scores.

As a countermeasure, we increased the positional accuracy re-
quested from iOS from a hundred to ten meters, even when Cell-
Guard operates in the background. Furthermore, we introduced
the novel distance criterion of Section 4.1 used by the latest version
of CellGuard. The criterion calculates with high error margins

and grants an additional margin based on the user’s speed to ac-
count for iOS’ lack thereof. The cell’s corrected distance is the raw
distance minus all margins and the maximum cell range of 75 km. If
this corrected distance exceeds zero, the verification awards fewer
points for the criteria, with 150 km being the absolute distance at
which a cell’s location is too far away. At this distance, an RBS
becomes plausible [74].

We found that this revised approach works well even with high-
speed trains. However, suppose a 2nd Gen iPhone SE is used that
does not expose speed measurements to CellGuard and records
inaccurate location data while flying. In that case, the algorithm
cannot always compensate for the difference between the location
of a connected cell on the ground and the iPhone’s recorded position.
This circumstance causes a high number of anomalous cells in
dataset #8.

Detection Results. Table 2 lists the resulting numbers from our field
test. No cell was marked as suspicious. CellGuard found multiple
cells where some detection criteria weremet, leading to a anomalous
rating. The cells marked as anomalousmight be RBSes or be affected
by network reconfigurations. Confirmation would require physical
analysis of the base station site to determine if it is accessed by
someone other than the legitimate network operator.

ALS Accuracy. Suppose a cell identification is not present in ALS;
our verification algorithm subtracts 20 points from the cell’s score,
as described in Section 4.1, and labels it as anomalous or even
suspicious if verifying more criteria fails. Due to our evaluation’s
low number of anomalous cells, we conclude that ALS covers a
significant percentage of cells in our datasets from European cellular
networks.

Upon repeated evaluation of our datasets, we find that the cells
in ALS change over time. Cells deemed missing in a past evaluation
are sometimes successfully verified upon a later reevaluation. Since
new cells tookmultiple days to appear in ALS, we assume that RBSes
installed over a short period will not end up in the ALS database,
even if operated by state-sponsored attackers. We presume most
unknown cells are harmless since network operators regularly
update their infrastructure.

Lab Setup with Evil Twin Rogue Base Station. We set up a custom
RBS in a controlled lab environment with a USRP X310 inside a
Faraday cage [27]. We use open5gs and srsRAN for the 5G setup,
srsLTE for the 4G setup, and YateBTS for the 3G setup [45, 76, 77].
The RBS is an evil twin of a legitimate nearby base station, cloning
the cell information (MCC, MNC, Cell ID). This evades the ALS-
based detector of CellGuard, as other iPhones have reported the
cell information to the ALS database at nearby locations. We then
observe connection attempts to this evil twin RBS using an iPhone
12 mini (Qualcomm modem) and an iPhone SE 2nd Generation
(Intel modem). Both have a valid SIM card of the network operator
with the same MCC and MNC. Our setup mimics a regular attacker,
meaning we cannot access the key material on the SIM card.

Previous work [60] employed a similar setup for 4G and 5G IMSI
catching. Palamà et al. found that all 4G and 5G devices connect
to an evil twin of a legitimate base station. If the legitimate base
station is still in range, some devices only connect if signals of
the legitimate base station are jammed. Our setup confirms these
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Table 2: Evaluation results of nine datasets, device numbers indicate different devices from the same model.

Days Unique Cells Verification Data Points

# iPhone Baseband Active Total Suspicious Anomalous Trusted Total Cell Meas. Packets Locations

1 12 mini Qualcomm Snapdragon X55 6 6 0.0 % 2.3 % 97.7 % 440 3661 1 622 064 43 576
2 12 mini Qualcomm Snapdragon X55 3 3 0.0 % 0.4 % 99.6 % 459 2220 415 199 8275
3 12 mini #2 Qualcomm Snapdragon X55 4 4 0.0 % 1.0 % 99.0 % 674 2327 460 695 20 613
4 13 mini Qualcomm Snapdragon X60 3 3 0.0 % 6.7 % 93.3 % 45 2003 414 012 21 658
5 2nd Gen SE Intel XMM 7660 3 3 0.0 % 0.0 % 100.0 % 324 1486 136 005 10 095
6 2nd Gen SE #2 Intel XMM 7660 4 4 0.0 % 0.3 % 99.7 % 289 7256 617 824 27 541
7 2nd Gen SE #2 Intel XMM 7660 21 26 0.0 % 0.6 % 99.4 % 1652 20 260 1 800 338 248 120
8 2nd Gen SE #2 Intel XMM 7660 26 30 0.0 % 9.0 % 91.0 % 796 15 482 884 220 114 737
9 2nd Gen SE #2 Intel XMM 7660 17 25 0.0 % 0.0 % 100.0 % 430 11 635 527 437 90 555
10 2nd Gen SE #2 Intel XMM 7660 67 83 0.0 % 0.3 % 99.7 % 8271 83 244 4 693 314 747 199

findings. The iPhone SE 2nd Generation connects to the 3G and 4G
RBS, but its Intel modem does not support 5G [8]. The same holds
for the iPhone 12 mini with a Qualcommmodem that supports 5G—
the carrier profile belonging to the network operator we spoofed
does not support 5G SA mode.

After establishing an initial connection, the iPhones attempt
mutual authentication. Without knowing the key material from
the SIM card, our evil twin RBS cannot complete authentication.
Independent of the wireless standard used, we observe the same
error messages indicated by the baseband chips. As outlined in Sec-
tion 4.1, Qualcomm chips send a Network Reject packet, while Intel
chips send IBINetRegistrationInfoIndCb packets with the reasons
IBI_NET_REGISTRATION_REJECT_CAUSE_FORB_PLMN and IBI_NET
_REGISTRATION_REJECT_CAUSE_INTERNAL_FAILURE. CellGuard
can reliably detect failed UE authentication attempts in our lab tests
by inspecting the baseband and iOS communication.

We observed a few failed authentication attempts appearing
during our field tests. Their appearance could also be grounded
in valid reasons, such as incomplete handshakes due to bad signal
reception.

Received Signal Strength. Advertising a higher signal strength is
the primary attack vector of RBSes for forcing UEs to connect with
them, as described in Section 2.2. One of our detection criteria of
Section 4.1 extracts the UE’s perceived signal strength values from
QMI and ARI packets. We devised and evaluated thresholds using
our custom RBS. Once they are exceeded, a connection to an RBS
is likely.

ARI packets transmit the UE’s signal strength and quality mea-
surements as percentages. We devise a threshold of 65% and 85%
for signal strength and quality.

QMI packets contain different raw measurements depending on
the current Radio Access Technology (RAT). If 2G (GSM) is active,
we can only extract the Received Signal Strength Indicator (RSSI),
for which we determine a threshold of −60 dBm. For 4G (LTE), we
can extract the RSSI, Reference Signal Received Quality (RSRQ),
Reference Signal Received Power (RSRP), and Signal-to-Noise Ratio
(SNR) measurements. Based on our experiments, we set a combined
threshold of −70 dBm RSSI, −4 dB RSRQ, −100 dBm RSRP, and 200
SNR for the respective measurements. We consider it exceeded only
if all measurements are larger than their threshold values. For 5G

(NR), the QMI packets contain all measurements present in 4G,
except the RSRP. We use a similar combined threshold without the
RSRP.

Local regulations limit wireless signal strength allowed for base
stations. At the intended receiver, the signal strength decreases at
an approximately inverse cubic relation with the distance to the
base station. Due to these factors, the expected signal strength at the
receiver is relatively low. Our field tests find that our signal strength
thresholds produce few false positives while reliably detecting our
RBS in the lab.

7 RELATEDWORK

RBS detection has a history of Android apps and SDR-based so-
lutions. A detailed study on app-based RBS detection compared
smartphone apps and analyzed their shortcomings in practice [63].
Since then, to the best of our knowledge, there have been neither
significant updates to these apps nor newly released apps overcom-
ing the flaws pointed out in the study. In the following, we compare
existing apps and SDR-based approaches with CellGuard.

CellGuard is the first app-based approach for iOS. It supports
iOS 14 to 18 and is built to be compatible with new features. The
sysdiagnose feature we use for baseband packet analysis was intro-
duced in iOS 10 [2]. Thus, it is a stable feature and will likely be
available for future iOS releases. A side-effect of using sysdiagnoses
is that CellGuard supports non-jailbroken phones.

Most previous app-based solutions for Android are no longer
maintained (Cell Spy Catcher, GSM Spy Finder, AIMSICD, Darshak)
and discontinued development several years ago [14, 17, 29, 75].
SnoopSnitch still gets UI updates, but the more accurate packet-
based detection that requires a rooted phone only supports Android
4.1.2 to 7.2.1 [71, 72]. Thus, users of these apps risk being exploited
by unpatched vulnerabilities that have been disclosed since 2016.
SnoopSnitch’s detection criteria were last updated in 2015 [69, 70].
Even when these apps were recent, packet-based analysis only
worked on rooted Android phones [14, 17, 72], further enhancing
the risk for users. In contrast, CellGuard works on the latest iOS
with all security patches applied and even with Lockdown mode
enabled.

FBS-Radar aims to detect unauthenticated 2G RBSes that send
SMS spam [46]. Here, RBSes are detected through crowd-sourced
collection of the spam messages inside an app rather than low-level
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cell properties. Thus, FBS-Radar cannot detect RBSes that have
other goals than sending spam, e.g., location tracking, network
traffic interception, or RCE. Furthermore, CellGuard does not
require users to share SMS with a cloud service for RBS detection.

CellGuard is the first to fully support 2G, 3G, 4G, and 5G. Rudi-
mentary 4G support was integrated into SnoopSnitch [69], while all
other app-based approaches only support 2G and 3G [14, 17, 29, 75].
Integrating 5G support into SDR-based approaches is challenging.
SeaGlass uses a GSM modem for RBS detection [57], as the authors
assume only 2G RBSes exist. Crocodile Hunter is fully SDR-based
and aims to study 4G-only RBSes, but the project development was
discontinued in 2022 [26].

8 CONCLUSION

RBSes threaten mobile security—they are the entry point to track
users, intercept network traffic, and gain RCE. CellGuard defends
against these attacks by warning users immediately when an RBS is
suspected to be present. It works on non-jailbroken iPhone models,
starting with the 6s up to the iPhone 15, running on iOS 14 to 18.
We evaluated CellGuard on 11 813 base stations collected over
multiple months on different iPhones and found 187 cells labeled as
anomalous by our novel verification algorithm based on six detec-
tion criteria. Most commonly, the device’s location was inaccurate,
or cells were missing from the ALS database. CellGuard collects
additional indicators, such as failed authentication attempts, and
notifies users about the score. Using our own RBS, we verified its
effectiveness and detection capabilities in a controlled environment.

Detection is enabled by our research framework BaseTrace to
analyze the communication between iOS and the baseband chip,
which is valuable for research beyond RBS detection. BaseTrace
supports the analysis of QMI for Qualcomm chips and ARI for
Intel chips. We enhanced QMI support for iOS with automated
Wireshark dissector generation and added a bridge for libqmi
that allows sending previously undocumented commands to the
baseband.

We enrich our detection with cell location information. Assum-
ing that RBSes are only installed temporarily to avoid detection,
they can be found by comparing them to a cell location database. In-
stead of using the open MLS and OpenCelliD databases, we reverse-
engineered Apple’s HTTPS endpoint for their ALS database. Our
evaluation comparing cell location databases shows that ALS is
highly accurate while containing significantly more cells than other
open databases, as all Apple users contribute to it automatically.

CellGuard will not only bring RBS detection to end-users, but
the frameworks we built around it enable the creation of further
tools for science.

AVAILABILITY

A detailed guide on how to set up and utilize CellGuard is hosted
on https://cellguard.seemoo.de. As of publishing this paper, Ap-
ple approved CellGuard for beta testing. Users can easily install
CellGuard via Apple’s official TestFlight app on non-jailbroken
iPhones without compiling the source code.

CellGuard and the underlying framework BaseTrace are open-
source and available on https://github.com/seemoo-lab/CellGuard.
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A ONBOARDING

Upon first installation, CellGuard starts with an onboarding di-
alogue (see Figure 10). This dialogue explains to the user what
CellGuard does, what RBSes are, the concept behind sysdiag-
noses, and guides the user through granting location permission.
A demo of the onboarding process and sysdiagnose import is also
available here: https://youtu.be/ohGHe-RAOT0.

(a) Welcome screen. (b) Functionality explained.

(c) Sysdiagnose primer. (d) Permissions.

Figure 10: CellGuard’s onboarding dialogue.

B DEBUG PROFILE INSTALLATION

On non-jailbroken devices, CellGuard requires the user to install
a baseband debug profile. CellGuard guides the user through the
relevant steps (see Figure 11). While no baseband debug profile is
installed, the summary tab displays an installation guide. We ask
the user to download the original baseband debug profile directly
from Apple’s website. After downloading, the debug profile appears
in the iPhone’s Settings, where users can tap it for installation.

(a) Summary w/o imports. (b) Debug profile link.

(c) Apple’s website. (d) Profile installation.

Figure 11: Debug profile installation steps.

https://youtu.be/ohGHe-RAOT0
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C SYSDIAGNOSE IMPORT

Users must regularly make sysdiagnoses on non-jailbroken devices
and import them into CellGuard. CellGuard guides the user
through capturing and importing sysdiagnoses (see Figure 12). After
taking a sysdiagnose, users can import it through the Settings and
share it to CellGuard. CellGuard summarizes imported data
upon success.

(a) Take sysdiagnose. (b) Import helper.

(c) Share sysdiagnose. (d) Import confirmation.

Figure 12: Sharing sysdiagnoses with CellGuard.

D QMI SERVICE COMPARISON

Table 4 shows all services supported by libqmi in version 1.33.3 [53].
Table 3 shows all QMI services implemented by the Snapdragon X55
baseband chipset in an iPhone 12. Not all services implemented in
the chipset’s service are also implemented by iOS. Table 3 indicates
if a service is also present in iOS, as previously listed in Table 1.

Table 3: QMI services present in the iPhone’s X55 baseband

firmware. •means that there is an iOS implementation for

that service, ◦ means that there is none.

# ID Version iOS Impl.

0x00 ctl 1.5 •
0x01 wds 1.177 •
0x02 dms 1.79 •
0x03 nas 1.25 •
0x04 qos 1.17 •
0x05 wms 1.10 •
0x06 pds 1.18 •
0x08 at 1.6 •
0x09 vs 2.1 •
0x0A cat 2.24 •
0x0B uim 1.77 •
0x0C pbm 1.4 •
0x0F test 1.0 ◦
0x11 sar 1.0 ◦
0x17 ts 1.0 ◦
0x18 tmd 1.0 ◦
0x1A wda 1.24 •
0x1D csvt 1.6 ◦
0x22 coex 1.0 •
0x24 pdc 1.0 •
0x29 rfrpe 1.0 ◦
0x2A dsd 1.63 •
0x2B ssctl 2.0 •
0x2C mfse 1.0 •
0x30 dfs 1.11 •
0x31 unknown 1.0 ◦
0x44 unknown 1.4 ◦
0x49 unknown 1.7 ◦
0x4A unknown 1.1 ◦
0x4E unknown 1.2 ◦
0x52 ms 1.0 •
0xE1 audio 1.0 •
0xE2 bsp 1.0 •
0xE4 awd 1.0 •
0xE5 vinyl 1.0 •
0xE6 mavims 1.0 •
0xE7 elqm 1.0 •
0xE8 p2p 1.0 •
0xE9 apps 1.0 •



Catch You Cause I Can RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 4: QMI services present in libqmi.

# ID Full Name

0x00 ctl Control Service
0x01 wds Wireless Data Service
0x02 dms Device Management Service
0x03 nas Network Access Service
0x04 qos Quality Of Service Service
0x05 wms Wireless Messaging Service
0x06 pds Position Determination Service
0x07 auth Authentication Service
0x08 at AT Service
0x09 voice Voice Service
0x0A cat2 Card Application Toolkit Service (v2)
0x0B uim User Identity Module Service
0x0C pbm Phonebook Manager Service
0x0D qchat QCHAT Service
0x0E rmtfs Remote File System Service
0x0F test Test Service
0x10 loc Location Service
0x11 sar Specific Absorption Rate Service
0x12 ims IMS Settings Service
0x13 adc Analog to Digital Converter Driver Service
0x14 csd Core Sound Driver Service
0x15 mfs Modem Embedded File System Service
0x16 time Time Service
0x17 ts Thermal Sensors Service
0x18 tmd Thermal Mitigation Device Service
0x19 sap Service Access Proxy Service
0x1A wda Wireless Data Administrative Service
0x1B tsync TSYNC Control Service
0x1C rfsa Remote File System Access Service
0x1D csvt Circuit Switched Videotelephony Service
0x1E qcmap Qualcomm Mobile Access Point Service
0x1F imsp IMS Presence Service
0x20 imsvt IMS Videotelephony Service
0x21 imsa IMS Application Service
0x22 coex Coexistence Service
0x24 pdc Persistent Device Configuration Service
0x26 stx Simultaneous Transmit Service
0x27 bit Bearer Independent Transport Service
0x28 imsrtp IMS RTP Service
0x29 rfrpe RF Radiated Performance Enhancement Service
0x2A dsd Data System Determination Service
0x2B ssctl Subsystem control Service
0x2F dpm Data Port Mapper Service
0xE0 cat Card Application Toolkit Service (v1)
0xE1 rms Remote Management Service
0xE2 oma OMA Device Management Service
0xE3 fox Foxconn General Modem Service
0xE6 fota Firmware Over The Air Service
0xE7 gms Telit General Modem Service
0xE8 gas Telit General Application Service
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